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Abstract

The unfolding of the COVID-19 pandemic has been very difficult to predict using mathemati-

cal models for infectious diseases. While it has been demonstrated that variations in sus-

ceptibility have a damping effect on key quantities such as the incidence peak, the herd-

immunity threshold and the final size of the pandemic, this complex phenomenon is almost

impossible to measure or quantify, and it remains unclear how to incorporate it for modeling

and prediction. In this work we show that, from a modeling perspective, variability in suscep-

tibility on an individual level is equivalent with a fraction θ of the population having an “artifi-

cial” sterilizing immunity. We also derive novel formulas for the herd-immunity threshold and

the final size of the pandemic, and show that these values are substantially lower than pre-

dicted by the classical formulas, in the presence of variable susceptibility. In the particular

case of SARS-CoV-2, there is by now undoubtedly variable susceptibility due to waning

immunity from both vaccines and previous infections, and our findings may be used to

greatly simplify models. If such variations were also present prior to the first wave, as indi-

cated by a number of studies, these findings can help explain why the magnitude of the initial

waves of SARS-CoV-2 was relatively low, compared to what one may have expected based

on standard models.

1 Introduction

Since the fundamental works of Kermack and McKendrick [1–3] compartmental mathemati-

cal models (such as SIR, SEIR, etc.) are used to model the spread of infectious diseases. Among

other things, these papers introduced the by now famous R0-value and showed that, in contrast

with human intuition, an infectious disease will never infect the whole population, no matter

how infectious. Instead, the incidence will start to decay when the fraction of recovered reaches

the so called the “Herd-Immunity Threshold”, for which they deduced the famous formula

1 � 1=R0: ð1Þ
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However, prior to the SARS-CoV-2 pandemic, there was no reliable data from a novel virus

(affecting humans) on which this prediction could be tested. Unfortunately, this remains

largely the case, since e.g. lockdowns and voluntary isolation (which the models can not pre-

dict) had a major effect on the spread. Despite this, data from places like Sweden, that did rela-

tively little to stop community transmission, indicate that the mathematical models have a

tendency to overestimate the magnitude of the wave during a major outbreak [4].

Several factors are known to have a damping effect on model curves. One such example is

variable susceptibility, see e.g. Ch. 1 and 3 in [5], and the articles [6–9]. By variable susceptibil-

ity we here refer to (time-invariant) differences between individuals in the probability of

becoming infected, given a certain exposure to the virus, as opposed to individual variations

over time. Similar results have also been established numerically for other heterogeneities,

such as age and activity [10]. Curiously, variable infectivity (super-spreaders) do not have any

damping effect on the spread during a major outbreak [11]. In any case, such conclusions are

derived using heuristic arguments or by simply testing relevant models, and the mechanisms

behind these phenomena remain poorly understood. In particular, since variability in suscepti-

bility is virtually impossible to quantify, it is unclear how to efficiently incorporate it into the

models, wherefore predictions of future COVID-19 waves, or the next pandemic, continues to

be a major challenge.

Concretely, suppose a novel infectious disease, whose transmission dynamics involves high

variability in infectivity and/or susceptibility, is introduced in a well connected network like a

large city, and suppose a major outbreak is about to take place. One may then estimate R0, i.e.

a rough estimate of the average number of new infections that one infective gives rise to, from

the data series of early cases, using e.g. EpiEstim [12] or [13]. By a contact tracing study one

may also estimate the generation time Tgeneration, which is the other parameter needed to run

a SIR-model. In such a scenario, one can ask the question if the output of a simple SIR-simula-

tion is a good first order approximation of what is about to come, in the absence of Non-Phar-

maceutical Interventions? Is the formula (1) a good indicator of when we may expect the

outbreak to start to recede?

Based on data from Sweden during the COVID-19 pandemic, the answer seems to be no,

see [4] where it is shown that the incidence dropped, unexpectedly, at levels of sero-prevalence

much lower than predicted by (1). Of the prior theoretical studies on this topic, the article that

comes closest to answering the above questions is Britton et. al. [10], where the authors prove

that variations in activity patterns can significantly lower the herd-immunity threshold, in

comparison with the classical estimate based on (1). An older publication with a similar mes-

sage is [14]. However, these conclusions are empirical observations based on models which

have been built to incorporate population heterogeneity. This damping effect has not been

established mathematically and it remains unclear how, and to what extent, different heteroge-

neities are manifested. In particular it remains unclear how to more accurately predict the

herd-immunity threshold. We remark that, in the case of SARS-CoV-2, a number of factors

such as genetic, cross-reactive immunity and innate immunity, have been shown to provide

variation in susceptibility [15–18].

1.1 Novel contributions

In this work we prove mathematically that variations in susceptibility have a damping effect on

the model curves, whereas variations in infectivity do not (as long as it is uncorrelated with the

former, see [7]). More importantly, we also find that the (usually unknown) distribution

describing how susceptibility varies is not needed for accurate modeling. More precisely we

show that a susceptibility heterogeneous model will behave almost identically to a standard
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(homogeneous) SIR-model where a portion of the population have sterilizing immunity, and

that the precise shape of the susceptibility distribution only influences the level of sterilizing

immunity. It is important to underline that this immunity only exists within the mathematical

model simplification, and should not be confused with real sterilizing immunity of some indi-

viduals. In other words, even if everyone is susceptible to the virus (to some degree), on a pop-

ulation level it will seem as if a portion of the population have sterilizing immunity. We will

refer to such an immunity, needed for accurate mathematical modeling, as “Artificial Steriliz-

ing Immunity” (ASI), and the fraction of the population having it as θ. As long as θ can be esti-

mated from available data, we show that the actual Herd-Immunity Threshold is indeed lower

than (1) predicts. The correct formula, in the presence of variable susceptibility, is given by

ð1 � yÞð1 � 1=R0Þ; ð2Þ

and the final size of the pandemic is also shrunk by the same factor (1 − θ). We shall also dem-

onstrate numerically that other population heterogeneities, such as those considered by Britton

et. al. [10], have an analogous effect, and hence the findings in this paper can be used to signifi-

cantly reduce the amount of unknowns in a more realistic heterogeneous model for disease

spread.

2 The mathematics of infectious disease spread dynamics

In order to explain the mathematical findings, we first give an overview of how the basic SIR-

model works. SIR stands for Susceptibles, Infectives and Recovered, and is the simplest form

of a “compartmental model” used in mathematical epidemiology (see e.g. [19] for an introduc-

tion to this field). In the model, S, I and R are functions of time t, and to illustrate how these

are related we shall also introduce the (redundant) function ν describing the incidence, i.e. the

amount of newly infected each day (not to be confused with I, which describes the prevalence).

The formula for ν(t) is at the heart of the algorithm, and in the beginning we simply have ν(t)
= αI(t), where α is a constant that determines how many new cases an average infective gives

rise to during a day. If a is the average number of daily potentially infectious contacts by an

average person, and p is the probability that such a contact actually leads to transmission, then

α = ap.

As the amount of susceptibles gradually decreases, we have to modify this by multiplying

with the fraction of the population that is still susceptible. If the total population is N this frac-

tion is S(t)/N and the formula becomes

n ¼
a

N
SI ¼

ap
N
SI: ð3Þ

To set up the remaining equations we also need the generation time Tgeneration, i.e. the average

time it takes from infection to recovery. The remaining equations are then

S0 ¼ � n

I0 ¼ n � sI

R0 ¼ sI

8
>>><

>>>:

ð4Þ

where σ = 1/Tgeneration and 0 indicates differentiation. The equations are intuitively easy to

understand, the incidence continuously gets withdrawn from S and added to I, and at the

same time there is a current of recovering individuals that leave I at a rate σI and appear in R
instead.
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The SIR-model, and our extensions thereof, are deterministic in the sense that if we run it

twice, the output is the same. Such models are believed to work well during major outbreaks,

where the law of large numbers applies [5, 11]. All our findings pertain to this situation; for

modeling of e.g. the initial phase or household transmission, other types of models are used.

The most natural initial condition for a new disease is to set I(0) = n where n<< N repre-

sents a small number of import cases arriving at time t = 0, and then set S(0) = N − n and R(0)

= 0 (so everybody else is initially susceptible and no-one has yet recovered). The value of n is

completely irrelevant for the shape of the curves that follow, a low value of n only gives the

equation system a slower start so it takes a while longer for the outbreak to reach a certain

value. Once this happens, the curves look exactly the same independent of the value n. See the

blue graphs in Fig 1 for some typical examples of R-curves and I-curves. In this model, R is

always increasing and levels out on a number which is called “the final size of the pandemic”

(see Fig 1a). S approximatively looks like N − R, since the prevalence I at any given time is

small in comparison with the total population. The incidence ν typically looks just like I, albeit

with a lower magnitude.

2.1 Contemporary models for COVID-19

Contemporary models used by professional modeling teams usually contain many more com-

partments than SIR, for instance relating to age stratification, variable activity levels, geograph-

ical regions, compartments for people who need ICU and compartments for people that die.

For example, the model published by members of the Imperial College COVID-19 response

team [20] has at its root a basic SIR (see p. 9 as well as S2 Fig in the supplementary material of

[20]), and the same goes for the model [21] used by a renowned Swedish modeling team,

which managed to fit the ICU occupancy and deaths with high accuracy during the first wave

in Sweden. The latter model also takes into account various regions and interaction patterns

between these, but the in-region dynamics is basically a simple SEIR. It is also common to add

a compartment E for “Exposed”, incorporating the incubation time, (as indeed is done in the

Fig 1. Graphs of recovered R and prevalence I. (a) Graphs of recovered (as a fraction of the total population) for various SIR-models and a fixed value

of R0 = 1.66. First we display standard SIR, then S-SIR and finally SIR with Artificial Sterilizing Immunity (ASI) with parameters from (8). Note that they

start out almost identically but that the latter two bend downwards much earlier than the first, which over-shoots the classical Herd-Immunity

Threshold (HIT), whereas the second two stay closely together and level out below the classical HIT. (b) Corresponding curves for prevalence I (the S-

graphs are shown independently in Fig 2).

https://doi.org/10.1371/journal.pone.0279454.g001
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above two examples). However, as we shall show in Section 4, this has a limited effect on the

overall behavior. By this we mean that, for every set of parameter values (R0, incubation time

etc.) for SEIR, it is possible to get an almost identical curve with SIR (and vice versa), if we are

allowed to alter the parameter values slightly. Since the exact value of these parameters is never

known, this means that for practical purposes one may just as well rely on SIR as on SEIR, at

least for understanding overall trends. For example, in Fig 3 we show an example of SEIR and

SIR with R0-values that differ by 1%, and the graphs are almost identical. For example the final

size of the pandemic differs by less that 1.5%. Moreover, compartments relating to severely ill

and deaths also have a marginal effect on the overall behavior, simply because only a small

fraction of the infected will end up in these compartments. Based on this, we argue that, for

the purposes of understanding the general overall behavior, as we are interested in here, it suf-

fices to study the simpler SIR-model. For other attempts to predict/model SARS-CoV-2 using

SIR/SEIR-type models see e.g. [22, 23].

In contrast, other types of heterogeneities such as variable activity levels and different inter-

action patterns between age groups, does have a notable damping effect on the model curves.

For example, the age-activity stratified SEIR by Britton et. al. [10] has an incidence peak of

about 35% lower than standard SIR, given analogous input parameters. This is consistent with

the findings in [10], where a drop in the Herd-Immunity Threshold of around 30% is observed

for the age-activity model, comparing with the prediction (1) based on SIR. This will be further

discussed in Section 4.2. Also variable susceptibility has a major effect, but this has already

been discussed in the introduction and is further analyzed in Section 3.

2.2 Model versus reality mismatch?

Whether or not the more advanced models accurately describe the spread of COVID-19 is

hard to determine, since one may always argue that Non-Pharmaceutical Interventions

(NPI’s) as well as voluntary behavioral changes have had a major impact. Without claiming

to have a definite answer, the case of Sweden is interesting due to its relaxed strategy, which

moreover was kept almost constant during 2020–2021. In particular, schools were kept

open, people who could not work from home were encouraged to go to work, family mem-

bers of infected households were obliged to work or go to school, and widespread face-mask

use was never implemented, making the country ideal for comparing models with actual

data. Due to insufficient testing, the time series of cases is of limited value, but measure-

ments of sero-prevalence from blood samples give valuable information, since it has been

established that most people who get COVID-19 also go on to develop anti-bodies [24], and

that these antibodies remain for at least 9 months [25, 26]. Results published by the Swedish

Public Health Agency [27] indicate that roughly 11% had had COVID-19 in the Stockholm

region after the first wave 2020, which rose to around 22% in February 2021, following the

second wave. Also among hospital staff in Sweden (not using face-mask), the prevalence was

around 20% [26] after the first wave, in line with observations from infected households else-

where [28].

However, the model by Sjödin et. al., referred to earlier, predicts a cumulative number of

infected people of around 30% after the first wave, despite assuming a 56% decrease in contacts

among people of age 0–59 and a 98% reduction among those aged 60–79 (this is for scenario d

which accurately fitted ICU-occupancy and death, see Fig 2b, bearing in mind that the Stock-

holm region has 2.4 million inhabitants). Along the same line, Britton et. al. [10] estimated

that the disease could level out at around 43% total infected, in a matter of months. While the

authors stress that this is not an actual prediction, it is based on realistic parameters for

COVID-19. The famous Report 9 by the Imperial College [29] predicted a total number of
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81% infected in a “do-nothing” scenario, based on a more advanced so called “agent based

model” that also treats household-contacts separately. According to Table 3 in the report, the

number of deaths and peak ICU capacity can be reduced by 50% and 81%, respectively, in the

most effective NPI-scenario, which certainly goes beyond what was implemented in Sweden.

However, as of February 2021, when the original Wuhan-strain was declining [30], these

reduced predictions overestimate the actual figure by a factor of roughly 4 (deaths) and 10

(ICU) (when directly translated to Stockholm County).

The point here is not to criticize any particular model, and clearly the case of Sweden

alone can not prove that models are right or wrong, as mentioned initially. However, based

Fig 2. Graphs of susceptibles S. S–curves corresponding to the 3 graphs in Fig 1. As in Fig 1, the blue black and pink have been normalized by division

by N. The black curve thus shows the proportion of the total population susceptible to the virus. Note that when the pandemic is over, around 68% are

still susceptible, in stark contrast to classical SIR which levels out at around 34%. The pink curve starts out assuming 57% have artificial sterilizing

immunity, and hence its initial value is 43% (this number was chosen using the formula (8)). Note that the pink curve looks exactly like the black except

for a vertical translation, illustrating the key findings of this article. The S-SIR model has three subgroups S1, S2, S3 corresponding to p1 = 1 (labeled

“super-susceptibles”), p2 = 0.1 (labeled “normal”) and p3 = 0.02 (labeled “well-protected”). Here we have normalized with the amount of people in each

respective subgroup, wherefore all curves start at 1. Note how the spread in the latter two sub-groups level out as soon as it levels out in the super-

susceptible group.

https://doi.org/10.1371/journal.pone.0279454.g002
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on the massive discrepancy between the actual Swedish data and the various model outcomes

described above, it is a legitimate question whether “contemporary models” have a tendency

to significantly overestimate the society spread and final size of the pandemic. We find it

likely that the answer is yes, and further support for this hypothesis is given in [4]. In this

paper we demonstrate that variable susceptibility is one factor that contributes to this

phenomenon.

2.3 Pre-immunity, super-spreaders and other inhomogeneities

How can we alter the equation system (3) and (4) in order to dampen the curves? The sim-

plest option is to assume that a certain fraction θ of the population have some form of steril-

izing immunity so that they can not get infected by the virus. Mathematically, this is easily

achieved by updating the initial conditions to

Sð0Þ ¼ oN

Ið0Þ ¼ n

Rð0Þ ¼ 0

8
>>><

>>>:

ð5Þ

where ω = 1 − θ is the fraction of initially susceptible. However, this is not very realistic

since immunity is usually not binary, i.e. either 0% or 100% (so called sterilizing immunity).

The hypothesis that some people are more susceptible than others is then far more plausible

than a binary immunity. In the particular case of SARS-CoV-2, the hypothesis that certain

individuals had some form of pre-immunity was suggested in various publications as an

explanation for the, at least according to some, unexpectedly mild initial infection waves,

see for instance [31]. This paper also lists a number of studies showing that some people had

some a priori T-cell immunity. Since then, different articles have demonstrated various

mechanisms that make certain individuals more or less susceptible to SARS-CoV-2, e.g.

[15–18]. It is also well established that infectivity levels vary dramatically, as mentioned ear-

lier (see e.g. [32]). In addition, this seems uncorrelated to how sick they become; many indi-

viduals with very high viral loads are even asymptomatic. In light of this, the most probable

assumption is that also the way the virus enters the human is subject to large individual

variations.

To make a more realistic model for the spread of COVID-19, or any infectious disease for

that matter, it is reasonable to divide the compartments S and I into a number of subcompart-

ments S1, . . ., SJ and I1, . . ., IK where people in each compartment have a different level of sus-

ceptibility/infectivity. To see how to set up a corresponding equation system for disease

spread, recall that a was the amount of daily contacts by one individual. We now let pjk be the

probability that such a contact leads to transmission when an individual in Sj meets one in Ik.
The incidence νj coming from the group Sj then becomes

nj ¼
Sj
N

apj1I1 þ . . .þ apjKIK
� �

ð6Þ

(c.f. (3)). Since we assume no correlation between infectivity and susceptibility, the total

amount of new infectives ν1 + . . . + νJ is then distributed among the groups I1, . . ., IK according

to their relative size. The remaining equations in (4) are easily modified to this new vector set-

ting, we refer to Sec. 1 in S1 File for the details. In the coming section we analyze the behavior

of this system of equations, and in Section 4 we also discuss other extensions such as SEIR and

variable activity levels.
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3 Main results

The main point of this research is that extensions to both SIR and SEIR of the type mentioned

above yield overall curves that are only marginally different from basic SIR, given that a level

of Artificial Sterilizing Immunity (ASI) is included. First of all, after setting up the details in

Section 1 of S1 File, we prove in Proposition 1.1 that the division of I into various sub-com-

partments have no effect whatsoever, further supporting the conclusions in [8, 9, 11]. In other

terms, the existence of “super-spreaders” do not in any notable way affect the dynamics of dis-

ease spread. Removing this layer of complexity, the Eq (6) simplify to

nj ¼
apj
N

SjI ð7Þ

where pj is the probability of transmission when a susceptible in group Sj encounters an “aver-

age” infectious individual. We refer to Eq (14)-(16) in S1 File for the full system of equations,

which we label S-SIR for “Susceptibility-Stratified SIR”. It is a very curious fact that the division

of S into subcompartments can not, in contrast to I, mathematically be further reduced to a

simpler equation system. However, and this is the key result of this paper, we can prove mathe-

matically that the overall behavior of S-SIR (in terms of prevalence I and recovered R) differs

only marginally from the basic SIR (3) and (4) upon including ASI to the initial conditions, as

we did in (5). This is the essence of Theorem 2.1, which is found in Section 2 of S1 File. Given

probabilities p1, . . ., pJ, the theorem also provides formulas for suitable values of the transmis-

sion coefficient α (used to compute the incidence ν in (3)) and artificial sterilizing immunity θ
(used in the initial conditions (5)), as follows:

a ¼ a
PJ

j¼1
wjp2

j
PJ

j¼1
wjpj

; o ¼
ð
PJ

j¼1
wjpjÞ

2

PJ
j¼1

wjp2
j

; ð8Þ

where ω = 1 − θ and wj is the fraction of the population initially belonging to Sj; wj = Sj(0)/N. A

simple illustration of these results is found in Section 1.3 in S1 File. It is important to be careful

with the interpretation of θ = 1 − ω as a fraction of people who actually have sterilizing immu-

nity, since there is, in reality, not a division of θN immune and ωN susceptible, which is why

we have chosen the acronym ASI; artificial sterilizing immunity. These results are illustrated

in Figs 1 and 2. Note in particular that, rather surprisingly, as soon as the most vulnerable sus-

ceptibility group (labeled super-susceptibles in Fig 2) runs out of new individuals to infect,

transmission in all other groups cease as well. This behavior is typical, see S1 Fig in S1 File for

a similar example with different values.

We have observed the same phenomenon also when modeling with SEIR and also when

including e.g. different age groups and variable activity levels, following [10]; models with

many such layers produce output which seem practically indistinguishable from the output of

SIR with ASI, i.e. (3)–(5). We leave as a numerical observation which we discuss further in Sec-

tion 4. In particular, given an estimated level of ASI θ in a society, it is mathematically impossi-

ble to draw any conclusions about how much of θ is caused by inhomogeneities in age and

behavior, and how much comes from variations in susceptibility.

Incidentally, at the end of each paper [1–3], Kermack and McKendrick stress that a weak-

ness in their model is that they assume uniform susceptibility, which they consider unrealistic

in many cases. However, it seems that they never got around to address this issue, and we have

not found a rigorous mathematical analysis of how to deal with this situation elsewhere in the

literature either. In particular, the formula 1 − 1/R0 for the Herd-Immunity Threshold (HIT),

which stems from their seminal papers, may very well be inaccurate, as suggested also in [10].

In the coming section we derive a refined version of this formula taking ASI into account.
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3.1 Formulas for R0 and the herd-immunity threshold

It is easy to see that the generation time Tgeneration (introduced below (3)) coincides with the

average time an infected individual remains infective. Since α is the infection rate, we conclude

that R0 = αTgeneration for the standard SIR (3) and (4), assuming a fully susceptible population.

However, in the presence of ASI θ, the actual infection rate is only (1 − θ)α and hence the cor-

rect formula for the R0-value becomes

R0 ¼ ð1 � yÞaTgeneration ¼ oaTgeneration: ð9Þ

The above value for R0 is the value that would be estimated by e.g. EpiEstim [12] or [13] from

a real time series generated by the model (3) and (4) with initial data (5). Mathematically, R0 is

defined as the number of new infections that one infected individual gives rise to, before dis-

ease induced immunity starts to build up. (To compute this, first solve I0(t) = −σI(t), given I(0)

= 1, recalling that σ = 1/Tgeneration, and then integrate the resulting incidence ν, as given by (3),

while keeping S(t) fixed at S(0) = ωN.) Similarly, one sees that the effective R-value, denoted

Re(t), in the above model is

ReðtÞ ¼
SðtÞ
N

aTgeneration ¼
SðtÞ
Sð0Þ

R0:

The term “herd-immunity” carry a variety of meanings [33]. In mathematical epidemiol-

ogy, given a certain model and a novel virus, the Herd-Immunity Threshold is defined as the

total number of infective and recovered needed to achieve Re(t0) = 1. Since

I0ðtÞ ¼
a

N
ðSðtÞ � sÞIðtÞ ¼ ðReðtÞ � 1ÞsIðtÞ;

(recall (4)), we see that this coincides with the point at which the wave of infectious naturally

starts to recede. Beyond this point, any import cases will not spark new outbreaks. We denote

this value by HIT.

In the SIR-model, it is assumed that individuals mix homogeneously and that recovered

individuals have protective antibodies (i.e. sterilizing immunity). While it is known that anti-

bodies wane over time, at least for SARS-CoV-2, this waning happens much more slowly than

the duration of an outbreak [25], and hence the latter assumption is reasonable for the discus-

sion of the herd-immunity threshold in a shorter time frame. However, we wish to stress that

the waning means that herd-immunity is never a stable condition, but will fade with time, and

hence the fact that herd immunity is reached during a particular wave does not prevent future

waves, which may occur either due to waning antibodies or the emergence of new variants.

Assume now that a SIR-model with a certain level of ASI accurately describes a given out-

break. The Herd-Immunity Threshold HIT then equals S(0)/N − S(t0)/N where t0 is the time

point when the herd-immunity threshold is reached, which can be found by solving Re(t0) = 1.

In other words HIT is the difference between the fraction S(t0)/N of susceptibles at the time t0
when herd-immunity is reached, and the fraction of susceptibles initially. In the SIR-model

with ASI, solving Re(t0) = 1 yields the equation S(t0)/N = 1/αTgeneration, and so we deduce

HIT ¼ o �
1

aTgeneration
¼ oð1 � 1=R0Þ; ð10Þ

where we used the earlier formula (9) as the definition of R0. This is the formula for the herd-

immunity threshold presented in Eq (2) in the introduction. It implies that the classical for-

mula (1), given an estimate of R0 from e.g. EpiEstim, is over-estimating the herd-immunity
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threshold. More importantly, it allows to predict HIT, given that the ASI parameter θ = 1 − ω
can be estimated from available data.

That the classical formula may be misleading has been pointed out before [14], and a more

recent contribution indicating that the HIT could be significantly lower than the value (1) is

[10]. These works illustrate this by simply testing models that involve heterogeneities (primar-

ily social mixing patterns, not variable susceptibility), and therefore it offers little guidance for

actual estimation of HIT. Formula (2) is, to our knowledge, the first time this effect has been

given a mathematical formula.

To sum up, we have deduced a new formula for the herd-immunity threshold in the model

SIR with ASI. Since the results in Section 3 imply that this is a good approximation to Suscepti-

bility-stratified SIR, it follows that the above formula applies to this model as well, with ω given

by (8). In Section 4 we demonstrate numerically that the same conclusion seems to be true also

for other heterogeneities, and hence the formula may be a better alternative for estimating the

herd-immunity threshold more generally (assuming that the value of θ can be inferred from

available data).

It is crucial to note that (10) applies under the assumption that the immunity is achieved by

natural spread. The herd-immunity threshold for vaccinating is still given by the classical for-

mula (1) (assuming the vaccine gives sterilizing immunity), which is shown in Section 1.2 of

S1 File. This indicates that it is harder to achieve herd-immunity by vaccination, but more

work is needed to establish these results in practice.

3.2 Damping and the final size of the pandemic

As mentioned earlier, several works have established that variable susceptibility have a damp-

ing effect on the prevalence. By the above results, this can now can be quantified. Suppose

ð~S;~I ; ~RÞ is a solution to SIR in a homogenous and fully susceptible population (so ~Sð0Þ ¼ N),

and let ~a be the corresponding transmission rate. Given a fixed value of ASI θ, it is then easy to

see that ðS; I;RÞ ¼ ðo~S;o~I ;o~RÞ is a solution to (3)–(5), where ω = 1 − θ and a ¼ ~a=o. Hence

the effect of ASI is really nothing but a rescaling of standard SIR curves. Note that rescaling

does not change the value of R0, which due to formula (9) is given byoaTgeneration ¼ ~aTgeneration

in both cases.

It is well known that the final size of the pandemic ~p ¼ ~Rð1Þ=N in the usual SIR (as well

as SEIR) is given by solving 1 � ~p ¼ e� R0 ~p (see [9] and Chapter 3 of [5]). Combining this with

the above we see that the final size of the pandemic π in SIR with ASI is given by solving

1 � p=o ¼ e� R0p=o:

Hence, in combination with our main result about reduction of Susceptibility-Stratified SIR to

SIR with ASI, we deduce that the above solution π is a good approximation to the final size of

the pandemic for S-SIR with ω given by (8).

4 Extension to more general models

For a disease like COVID-19, with a short incubation period followed by an even shorter infec-

tious period, there is only a marginal difference between modeling using SIR and using SEIR,

and hence we believe that the key conclusions of this paper extend to this model as well. Simi-

larly, we have found numerically that more advanced SEIR-models taking variable age and

activity levels into account, behave just like SIR if we incorporate ASI. We leave the formal ver-

ification of these observations as an open conjecture, and content ourselves with showing

some examples.
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4.1 SEIR

SEIR has two key parameters apart from R0, namely Tinfectious and Tincubation, where the former

is the average time that a person is infectious and the latter is the time from when a person

becomes infected until he or she becomes infectious. Estimates for these vary, we here follow

Britton et. al. [10] and set Tincubation = 4 and Tinfectious = 3. It then follows that the generation
time equals

Tgeneration ¼ Tinfectious þ Tinfective ¼ 7;

where the generation time is the average time it takes from a person getting infected until that

person infects others (see Eq (5) in the supplementary material to [30] for a formal derivation).

Note that this is consistent with the choice of Tgeneration in previous sections.

The reason why SEIR and SIR give almost identical output for COVID-19 is that both are

primarily determined by the values of Tgeneration and R0. To wit, during a major outbreak, it

does not matter if a person is sick for 7 days and infect R0 people during those 7 days, or if he

undergoes incubation for 4 days and then infect R0 people during the remaining 3 days. As an

example, consider Fig 3(a); we see a very similar behavior by choosing parameters for SIR and

SEIR in accordance with the above formulas (with R0 fixed). Moreover, by allowing free

parameters, SIR can be made to behave almost identically as SEIR (even without involving

ASI). To support this claim, not the almost perfect overlap between the blue and black curves

in Fig 3, obtained by keeping Tgeneration fixed and modifying R0 by one percent. Since the exact

value for the input parameters are unknown in reality, we argue that it is irrelevant whether

one uses SIR or SEIR, at least for modeling of SARS-CoV-2 and viruses with similar character-

istics. Therefore, the observations of this paper should extend to SEIR as well, even if we have

not been able to establish this mathematically.

4.2 Heterogeneous models

Variable susceptibility is not the only type of population heterogeneity which could manifest

itself as ASI on a macro level. In [10] the authors develop a heterogeneous SEIR model taking

Fig 3. Approximations using SIR with ASI. (a) SEIR with R0 = 1.66 and Tinfectious + Tinfective = 7 (blue), SIR with the same R0 and Tgeneration = 7 (red)

and finally SIR with a 1% lower R0, same Tgeneration (black). (b) Age-activity stratified SEIR with R0 = 1.66 and Tinfectious + Tinfective = 7 (blue); SIR using

the same Tgeneration but an ASI of 25% and slightly different R0 (black).

https://doi.org/10.1371/journal.pone.0279454.g003
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variable interaction pattern between different age-groups into account, as well as the fact that

people in each age-group have varying amount of contacts. We implemented their model and

then sought parameters for SIR with ASI that would yield a similar output. The result is seen

in Fig 3(b). Again, the difference is so fine that it would be impossible to spot in practice.

Henceforth, what may appear as a certain level of population (pre-)immunity in mathematical

models may in fact be a mix of various population heterogeneities, in which variable suscepti-

bility is only one ingredient.

5 Discussion

There could be many reasons for why certain people are more susceptible than others to

infection by a novel virus, ranging from innate and adaptive immunity to cross-reactive

immunity from other known viruses as well as genetic differences. For a novel disease, steril-

izing pre-immunity, i.e. individuals which are completely immune without ever having had

the virus, most likely does not exist. The key point of this study is that sterilizing individual

immunity is not needed in order to observe what looks like sterilizing immunity on a popu-

lation level, which we have coined ASI; artificial sterilizing immunity. We show mathemati-

cally that, in order to have ASI, we only need moderate variation in susceptibility. Moreover,

we demonstrate numerically that other types of population heterogeneities, such as variable

social mixing patterns, also manifest themselves as ASI. The findings in this paper do not

limit themselves to SARS-CoV-2, but basically shows that classical formulas for the herd-

immunity threshold and the models for spread of infectious diseases with roots in the

famous paper by Kermack and McKendrick [1] are inapt to model any infectious disease

subject to large variability in susceptibility, and need to be modified as described in Section

3.1.

The estimation of the herd-immunity threshold HIT is crucial for efficient disease control

management and planning. For example, if a society decides to make a lock-down before HIT

is reached, it is almost certain that the disease will re-emerge unless NPI’s are maintained

indefinitely. The classical formula (1) is still very much in use, despite the fact that it is known

to rely on a number of oversimplifying assumptions which may lead to an erroneous indica-

tion. We have established a new formula which we prove applies when variable susceptibility is

present. Since we show that our simplified model, SIR with ASI, also seems to be a good substi-

tute for models that involve variable social mixing patterns, it is possible that (2) applies more

generally than what we are able to prove mathematically.
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