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One of the crucial steps in assessing hemodynamic parameters using impedance
cardiography (ICG) is the detection of the characteristic points in the dZ/dt ICG
complex, especially the X point. The most often estimated parameters from the
ICG complex are stroke volume and cardiac output, for which is required the left
ventricular pre-ejection time. Unfortunately, for beat-to-beat calculations, the
accuracy of detection is affected by the variability of the ICG complex subtypes.
Thus, in this work, we aim to create a predictivemodel that can predict themissing
points and decrease the previous work percentages of missing points to support
the detection of ICG characteristic points and the extraction of hemodynamic
parameters according to several existing subtypes. Thus, a time-series non-linear
autoregressive model with exogenous inputs (NARX) feedback neural network
approach was implemented to forecast the missing ICG points according to the
different existing subtypes. TheNARXwas trained on two different datasets with an
open-loop mode to ensure that the network is fed with correct feedback inputs.
Once the training is satisfactory, the loop can be closed for multi-step prediction
tests and simulation. The results show that we can predict the missing
characteristic points in all the complexes with a success rate ranging between
75% and 88% in the evaluated datasets. Previously, without the NARX predictive
model, the successful detection rate was 21%–30% for the same datasets. Thus,
this work indicates a promising method and an accuracy increase in the detection
of X, Y, O, and Z points for both datasets.
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1 Introduction

The impedance cardiography (ICG) signal (dZ/dt) is a result of the first-time derivative
of the impedance changes signal ΔZ in the thorax area. Inspired by PQRST of the
electrocardiogram (ECG) signal, the dZ/dt signal is annotated by seven typical
characteristic points, namely ABEXYOZ (Lababidi et al., 1970).

Some of the most difficult points to detect in the dZ/dt signal, especially in automatic
detection, are the X and B points.
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Those characteristic points are crucial for calculation of the most
common hemodynamic metrics for assessing cardiac function, such
as the left ventricular pre-ejection time (LVET), which is a precursor
for the calculation of stroke volume (SV). LVET is directly associated
with the systole period of the cardiac cycle (Wang and Gottlieb,
2006; Cybulski, 2011). It is also one of the first analyzed indices in
the literature (Kizakevich et al., 1993; Sherwood et al., 1998). It is
defined as the interval period between the B and X points in the dZ/
dt waveform (Bernstein and Lemmens, 2005).

The SV is defined as the amount of blood ejected from the left
ventricle in one cardiac cycle. One of its coexisting parameters is
cardiac output (CO), which is the total amount of blood pumped in
1 min. Thus, CO results in the product of SV and heart rate (HR).

In addition, many other indices are related to the detection of the
dZ/dt characteristic points, such as the isovolumic relaxation time
(IVRT), which is defined as the period interval between X and O
points. It measures the activity of ventricular relaxation related to
diastolic function (Summers et al., 2003).

Thus, the dZ/dt characteristic points are crucial elements in the
calculation of LVET, SV, and other important hemodynamic
parameters. However, reliable detection of those points remains
difficult, especially in automatic processing (Sherwood et al., 1990;
DeMarzo and Lang, 1996; Meijer et al., 2008). Moreover,
straightforward detection of the other characteristic points of the
dZ/dt waveform encounters similar problems (Sherwood et al., 1990).

1.1 Detection of ICG characteristic points

One of the main challenges is the observed changes in the ICG
waveforms. These changes have been interpreted in different ways and
are usually left with unclear conclusion on their sources (Kööbi et al.,
2003; DeMarzo, 2009; Cybulski, 2011; Tronstad et al., 2019). The
observed variability between waveforms impacts the accurate
detection of specific ICG points, such as point X, and this has led to
the proposal of different detection mechanisms (BIOPAC Systems Inc,
2018). A derivative of the ICG signal, dZ/dt, as shown in Figure 1, was
used to accurately detect the ejection time (Patterson and Shewchun,
1964; Kubicek et al., 1966). The authors demonstrated that the
maximum point of the first derivative, dZ/dtmax (traditionally noted
as point C or E), is related to the rate of ventricular blood ejection
(Kubicek et al., 1970). Additionally, to avoid interference in the baseline,
the crossing point with the baseline of the dZ/dt signal (noted as the B
point) (Sherwood et al., 1998) (opening of the aortic valve) was changed
to a 15% response of the dZ/dt waveform from the baseline (Kizakevich
et al., 1993). Another method exists for calculation of the B point
around the R peak of the ECG signal using an equation. However, there
is no golden standard algorithm, and, usually, the assembling average
method (Riese et al., 2003) is the standard process used to calculate the
hemodynamic parameters from the dZ/dt signal. To attenuate the
changing morphology, however, averaging all beat-to-beat cycles
together may result in discarded information that is potentially
relevant for ICG analysis. It also includes a higher level of missing
points (Benouar et al., 2018). In a previous study (Benouar et al., 2018),
systematic variability was reported in the dZ/dt signals, which resulted
in five distinct ABEXYOZ complex subtypes. Not all subtypes include
typical ICG characteristic points. Figure 1 presents a typical ABEXYOZ
ICG waveform. Figure 2 presents a reminder of the different existent

ICG subtypes, and more details are explained elsewhere (Benouar et al.,
2018). In this work, an overview of the first steps toward the detection of
the ICG characteristic points according to the classified ABEXYOZ
subtypes is presented, where a predictive model has been trained and
tested on two different datasets V and S. The R peak of the ECG has
been used to create a time series between the R-ECG and the ICG
characteristic points (ABEXYOZ), in addition to those specified by the
ABEXYOZ subtypes (X1 and X2). Thus, to widen the possibility of
evaluating LVET and other ICG parameters according to the
ABEXYOZ subtypes, automatic detection and prediction of the ICG
characteristic points are required for further investigation of the
characteristic points and ICG index parameters.

To this end, a non-linear autoregressive model with exogenous
inputs (NARX) is used for predicting the future values of the ICG
characteristic points, including detection of the suitable X point. The
learning of such long-term temporal dependencies using several
existing algorithms is critical, and the algorithm with the best
performance was chosen in this study.

2 Materials and methods

2.1 ICG datasets

In this work, two completely different datasets were used
(named dataset V and dataset S). The measurements contained
in the datasets were recorded at the Laboratory of Medical Textile-
Electronics at the University of Borås, Sweden, and have been
reported elsewhere (Rempfler, 2011; Marquez et al., 2013; Hafid
et al., 2017; Hafid et al., 2018).

The ICG recordings were completed after participants signed an
informed consent form according to ethical approval 274-11 granted by
the Regional Committee for Ethical Vetting of Gothenburg. As indicated
in Table 1,more than 700 s containingmore thanX ICG complexes from
a total of eight volunteers are contained in two different datasets.

The recordings were obtained with two different ICG recorders
using different but compatible electrode positions on several
different volunteers. The sampling frequency was 250 Hz for
dataset V and 1,000 Hz for dataset S (see Table 1).

The recordings were carried out with the following:

• A Respimon impedance recorder (Medical Electronics Lab,
Chalmers University of Technology, Sweden) as described by
Rempfler (2011) and Marquez et al. (2013). Electrode
placement of both datasets V and S of eight electrodes is
described by Benouar et al. (2018).

• All volunteers were healthy and young.
• And data were fully anonymized.

Figure 3 presents the percentages of ICG complex subtypes, also
known as ABEXYOZ complex subtypes in both datasets V and S,
where an imbalance between subtypes and dominance of some
subtypes against others is observed.

Figure 4 represents the percentages of missing points in datasets
S and V, where most missing points are crucial ones for calculation
of the most common hemodynamic parameters. Some ICG
characteristic points have the same behavior; they appear and
disappear together, such as the ABE points and YOZ points,
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suggesting that the variability of the ICG waveform can affect more
than one characteristic point.

2.2 Data processing for NARX ingestion

The main purpose for building a NARX predictor was
principally to create a model that can predict the position of ICG
characteristic points in ABEXYOZ complex subtypes with missing

points, and to decrease the actual percentages of missing points
(Benouar et al., 2018).

Figure 5 represents the general process for data processing in
NARX ingestion. All the steps are detailed in the following
subsections.

2.2.1 Collecting the data
The data used in this part of the work were from datasets V and S

(Benouar et al., 2018).

FIGURE 1
Typical dZ/dt waveform recorded simultaneously to the ECG signal. The dZ/dt signal is marked by its characteristic points. LVET is the interval
between B and X points. The main differences of atypical dZ/dt complexes (subtypes) are principally in the X1–Z part, where X1 is the minimum point on
the descending slope of the E-wave.

FIGURE 2
dZ/dt waveform subtypes. (A) ABEXYOZ3. (B) ABEXYOZ1. (C) ABEXYOZ4. (D) ABEXYOZ2. (E) ABEXYOZ5. (F) ABEXYOZu.

TABLE 1 Description of datasets V and S.

Nr electrodes Nr subjects Device Total recording length s) Sampling frequency (Hz)

Dataset V 8 4 Z-RPI 480 250

Dataset S 8 4 Respimon 240 1,000
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Thus, a time-series table was calculated for each subtype of each
volunteer, which were the time intervals between the R peaks of the
reference signal ECG and the ICG characteristic points for each
ABEXYOZ complex, as shown in Figure 6. This resulted in a matrix
M with the time series as columns: RR, RA, RB, RE, RX1, RX2, RY,
RO, and RZ, knowing that

• X1 is the first minimum of the ascending slope after the E point
• X2 is a true X in ABEXYOZ0 and ABEXYOZ1, with X missing
elsewhere

And the rows include all the volunteers’ subtype cycles for both
datasets.

• The absence of some subtypes in some volunteers is noted as
NaN values, where they were replaced by themean of the other
cycles that were available

FIGURE 3
Percentages of ICG subtypes in both datasets V and S.

FIGURE 4
Percentages of missing ICG characteristic points for both
datasets V and S.

FIGURE 5
Flowchart of general data processing implemented in this study.
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2.2.2 Preparing the data
The data were processed as follows (see the normalization block

in Figure 5):

1. Normalizing the columns by the RR: To account for differences
in heart rate between subjects, we normalized the data by dividing
each value in the dataset by the corresponding RR interval.

2. It was noticed that each acquisition system [Z-Rpi and Respimon
(Rempfler, 2011; Marquez et al., 2013; Hafid et al., 2017; Hafid et al.,
2018)] has its own range of data; therefore, each acquisition system
should have its own predictive model, which is not practical. Thus,
the data were normalized between the two datasets in order to have
onemodel that fits all the data. To preserve the relationships between
the components of the value concerning the length, the sum of
squares normalizationmethodwas used at this stage to scale the data
so that each column has a sum of squares equal to 1, ensuring equal
weight was given to each variable during analysis. This was to
prevent certain features from dominating the analysis and enables
comparison of data across different datasets.

3. Preparing the format of the data according to the chosen model:
In our case, as a standard neural network matrix of cell arrays, we
converted the normalized matrix into a cell array where each row
of the cell array corresponds to a single observation, and the
columns contain the features.

2.3 Time-series NARX feedback neural
networks

The time-series feedback neural network NARX is a recurrent
neural network architecture, and it can be used in several
applications as apredictor,non-linear filter,modeling non-linear
dynamic systems.

In this work, the NARX was used as a predictor to estimate the
next value of the input signal; i.e., the NARX was used as a time
series non-linear prediction model. Figure 7 presents the general
architecture of the NARX model.

The chosen method was suitable for time-series prediction and
modeling using a dynamic recurrent artificial neural network. This
form of prediction is known as non-linear autoregressive (NAR) and
fits our application. The autoregressive function can be written as
follows:

y t( ) � f y t − 1( ), . . . , y t − d( )( ). (1)
Our configuration was set with eight inputs and eight outputs.

The inputs correspond to the intervals between ICG characteristic
points ABEXYOZ and R-ECG. Two possible values of X (X1 or X2)
presented previously by the ICG are noted as follows: RA/RR, RB/
RR, RE/RR, RX1/RR, RX2/RR, RY/RR, RO/RR, and RZ/RR.

In this work, the basic default setting model, which consists of
one layer input of ten neurons with delay d = 2, was used.

Figures 8, 9 show the NARX schematic during the training and
testing process, respectively.

2.3.1 Training the model
The training was carried out as follows:

1) The model was trained using the typical ICG cycles (labeled
as ABEXYOZ0) because we aimed to use the model to predict
the right values of missing points in the rest of the
ABEXYOZ subtypes that have at least one or several
missed points. Validation and test training were carried
out as follows.

The input vectors and target vectors were randomly divided into
three sets.

- 70% was used for training
- 15% was used to validate that the network was generalizing
and to stop training before overfitting

- The last 15% was used as a completely independent test of
network generalization

2) The training was carried out with the open-loop prediction (see
Figure 8) because it is more efficient than with closed-loop

FIGURE 6
Flowchart of time-series calculation.
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prediction. Thus, this allows us to supply the network with
correct feedback inputs by training it to produce the correct
feedback outputs.

3) The training was carried out several times using several
algorithms until the best performance was reached

(Levenberg–Marquardt, scaled conjugate gradient, and
Bayesian regularization).

Once training was completed, the loop was closed for multi-step
prediction tests and simulation.

FIGURE 7
General architecture of the NARX model.

FIGURE 8
Synoptic schematic of the NARX prediction model during the training process.

FIGURE 9
Synoptic schematic of the NARX prediction model during the testing process.
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3 Results

3.1 Selection of the training model
evaluating training performance and
predictive accuracy

Table 2 presents the Pearson correlation coefficient (R), the root
means squared error (RMSE), the mean absolute error (MAE), the
mean square error (MSE), and the cross-validation (VEcv) obtained for
the three different algorithms: Levenberg–Marquardt, Scaled Conjugate
Gradient, and Bayesian regularization. Such parameters were used to
evaluate the accuracy and performance of the predictive models.

Our results are expressed through time series prediction
regression plots, where the letter “R” typically refers to Pearson’s
correlation coefficient, which is a measure of the strength of the
linear relationship between the targeted and predicted output of the
model. This correlation coefficient is used to assess the goodness of
fit of a linear regression model for a time series prediction model.

Figures 10, 11, and 12 show the performance results of the
training of the model using the three evaluated algorithms,
Levenberg–Marquardt, Scaled Conjugate Gradient, and Bayesian
regularization, respectively.

After evaluating the obtained training performance and
predictive accuracy, the training algorithms were ranked as
follows: first Levenberg–Marquard, second Bayesian
regularization, and third scaled conjugate gradient.

Thus, the chosen model was the model trained with the
Levenberg–Marquardt algorithm. The performance achieved
when forecasting the missing characteristic points through all the
ABEXYOZ subtypes was similar across the S and V datasets, both
producing an R value = 0.93. While dataset V had a more consistent
performance with R = 0.9 or above, dataset S exhibited the best
performance of all cases for subtypes ABEXYOZ2 and ABEXYOZ5,
with R = 0.99. The worst performance was obtained from dataset V,
producing R = 0.82 for ABEXYOZ3.

3.2 Forecasting the performance of the
implemented NARX

Tables 3, 4 present the accuracy parameters of the target and the
output (predicted values). The performance of the model was
evaluated for each dataset separately and all together. In addition
to the regression coefficient (R), RMSE and MAE were used to
evaluate the model accuracy of our neural network. Moreover, MSE
and the VEcv were calculated to evaluate the accuracy of the NARX
model during and after the training (Table 3). The results are

TABLE 2 Accuracy parameters of the three different algorithms:
Levenberg–Marquardt, scaled conjugate gradient , and Bayesian
regularization.

VEcv (%) MSE RMSE MAE R

LV 76 0.001 0.029 0.023 0.98

SCG 72 0.004 0.059 0.037 0.96

BR 74 0.002 0.039 0.030 0.98

FIGURE 10
Regression plots of the model trained with the Levenberg–Marquardt algorithm. (A) Training (B) Validation (C) Test (D) All.
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presented per subtype in Table 4. The equations of the accuracy
parameters are presented in Table A1.

3.3 Enhancement in the detection of XYOZ

Compared to Figure 4, Table 5 shows an enhancement in the
accuracy percentages of the detection of ICG characteristic points
XYOZ across the different ABEXYOZ complex subtypes.

The values for Lin’s concordance correlation coefficient shown
in Table 6 indicate that the accuracy of the prediction was better for

subtypes ABEXYOZ1 and ABEXYOZ2 than for subtypes
ABEXYOZ3 and ABEXYOZ4.

When focusing on the linearity of the NARX and evaluating the
regression plots obtained in Figures B1, B2, we can see that the
linearity of the predicted values is remarkable, providing an R
coefficient ranging from 0.90 for ABEXYOZ 4 to
0.97 ABEXYOZ2 in dataset V. ABEXYOZ2 exhibited the best
forecasting performance (see Figure B2B), with almost the same
accuracy in the training stage (Figure 12A), which is a promising
result in forecasting the right X point, while ABEXYOZ3 presented
the lowest accuracy with R = 0.81 (Figure B2C).

FIGURE 11
Regression plots of the model trained with the Scaled Conjugate Gradient algorithm. (A) Training (B) Validation (C) Test (D) All.

FIGURE 12
Regression plots of the model trained with the Bayesian regularization algorithm. (A) Training (B) Validation (C) All.
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3.4 Identification of themost suitable X point
in complexes with multiple candidates

As mentioned previously, the ICG subtype ABEXYOZ2 presents
two possible true X (X1 or X2). Figure 13 presents the forecasting of
X1 and X2 in subtype ABEXYOZ2 for both datasets, and it shows
that X1 provided a smaller standard deviation regarding the
reference ratio used as reference X1/RR for dataset S, while
X2 provided a smaller standard deviation for dataset V.

3.5 Missing points

As a result of processing the time series with theNARXpredictor, the
number of missing points was significantly reduced. Figure 14 indicates a
reduction of missing points from 76% and 56% to 23% and 29% for X
points in dataset S and V, respectively, and from 79% and 83% to 27%
and 33% for Y, O, and Z points in datasets S and V, respectively.

4 Discussion

4.1 Selecting the training model

First, an evaluation of the algorithms was conducted to choose the
algorithm that performs with higher accuracy on the datasets used for
this specific application. All algorithms showed a good performance
range with a maximumVEcv of 76% at LV and a minimum of 72% at
SCG. Regardless of the R values of 98 for both LV and BR, the LV was
chosen for having a higher VEcv and lower MSE, RMSE, and MAE
than the BR (see Table 2). Thus, the chosen algorithm was
Levenberg–Marquardt, and the two other algorithms are Bayesian
regularization and scaled conjugate gradient; this latter algorithm uses
less memory, so it might be a suitable choice if the hardware selected
for implementation presents computation power limitations. In such
a case, there will be a trade-off between accuracy and memory.

The training starts with an open loop to feed the network with
the targeted information; for this, typical ICG subtypes have also
been used to train ourmodel to detect typical ICG points. The loop is
then closed to receive any new information such as any kind of ICG
subtype. At this stage, the training is completed, and the model can
forecast the future inputs of the time series of the ICG subtypes.

4.2 Performance of the predictive model
NARX

The accuracy results in Table 3 are satisfactory; the obtained
RMSE values are all lower than 0.1, which is an indication of
excellent machine learning performance (Raschka and Mirjalili,
2019). In this study, we notice that the minimum value of RMSE
is approximately 0.003. An RMSE value of approximately 0.003 in
ICG analysis is generally considered to be a highly accurate and
precise result, as presented in other works in the same area studying
the ICG signal that 0.003 is an indication of excellent performance
(Guinot et al., 2019).

The highest RMSE in Table 4 was for subtype ABEXYOZ3; it
was equal to 0.1, the threshold for excellent performance.

The distribution of the VEcv of our model showed that the
maximum is 76% during the training in the open loop. The results
drop down around −0 to −4% for forecasting during the closed loop;
however, while the delays are removed, the VEcv of up to a
maximum of 75% is observed (see Table 3).

Using the validation datasets per subtype, we notice that the
minimum of VEcv was at 55%, 65% at ABEXYOZ3, and 59% and
63% at ABEXYOZ4 for datasets S and V, respectively (see Table 4).
The same noticeable minimum values of Lin’s CCCs were 0.67 and
0.78 and 0.69 and 0.73 for ABEXYOZ3 and ABEXYOZ4 in datasets
S and V, respectively (see Table 6).

Considering the thresholds presented in a study on
296 applications of 70 predictive models (Li, 2016; Li, 2017), the
VEcv value and the performance of themodels are suggested as follows:

• Very poor if VEcv ≤10%
• Poor if 10%< VEcv≤ 30%
• Average if 30%< VEcv ≤50%
• Good if 50< VEcv ≤80%
• Excellent if VEcv >80%

TABLE 3 Accuracy parameters of the detection of the ICG characteristic points
during the training and forecasting stages.

Training; open loop VEcv (%) MSE RMSE MAE R

All 76 0.001 0.036 0.023 0.98

Dataset S 73 0.004 0.053 0.034 0.96

Dataset V 73 0.004 0.062 0.038 0.95

Forecasting VEcv (%) MSE RMSE MAE R

ALL Closed loop 72 0.004 0.064 0.044 0.95

Removed delay 74 0.003 0.052 0.034 0.96

Dataset S Closed loop 73 0.003 0.055 0.042 0.96

Removed delay 75 0.001 0.034 0.025 0.98

Dataset V Closed loop 79 0.005 0.071 0.050 0.93

Removed delay 72 0.004 0.062 0.044 0.95

Bold values indicate the improved forecasting results.

TABLE 4 Accuracy parameters of the detection of forecasting the ICG
characteristic points after removing the delay results per subtypes.

VEcv (%) MSE RMSE MAE R

ABEXYOZ1 Dataset S 73 0.003 0.056 0.043 0.97

Dataset V 70 0.004 0.065 0.040 0.92

ABEXYOZ2 Dataset S 76 0.001 0.030 0.021 0.99

Dataset V 75 0.001 0.031 0.022 0.98

ABEXYOZ3 Dataset S 55 0.019 0.100 0.096 0.82

Dataset V 65 0.008 0.093 0.056 0.91

ABEXYOZ4 Dataset S 59 0.011 0.098 0.088 0.89

Dataset V 63 0.008 0.094 0.058 0.90

ABEXYOZ5 Dataset S 76 0.001 0.032 0.020 0.99

Dataset V 75 0.003 0.055 0.026 0.97
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TABLE 5 Accuracy percentages of the detection of ICG characteristic points in the different ABEXYOZ complexes.

Dataset S ABEXYOZ1 ABEXYOZ2 ABEXYOZ3 ABEXYOZ4 ABEXYOZ5

X (%) 78 79 74 76 79

YOZ (%) 78 78 74 76 78

Dataset V ABEXYOZ1 ABEXYOZ2 ABEXYOZ3 ABEXYOZ4 ABEXYOZ5

X (%) 52 55 51 51 54

YOZ (%) 82 84 82 82 83

Bold values indicate the improved forecasting results.

TABLE 6 Lin’s concordance correlation coefficient of the predictive model for forecasting the missing characteristic points in all the ABEXYOZ subtypes for each
dataset.

Lin’s (CCC) ABEXYOZ1 ABEXYOZ2 ABEXYOZ3 ABEXYOZ4 ABEXYOZ5

Dataset S 0.90 0.96 0.67 0.69 0.96

Dataset V 0.89 0.91 0.78 0.73 0.93

FIGURE 13
Standard deviation forecasting the X point in (A) dataset V and (B) dataset S.
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Thus, our predictive model falls in the good performance
category with a range of 55%< VEcv ≤76%.

Moreover, comparing the obtained performance of the predictive
model previously shown in Table 5 with the results reported in our
previous work (Benouar et al., 2018), we notice that detection of the ICG
characteristics points has been enhanced in every waveform subtype.

From Figure 14, we notice in all the ABEXYOZ complexes that
with the built predictive model, it is possible to predict the ICG
characteristic points in all the typical complexes at 88% for dataset S
and 75% for dataset V.

The NARX predictor increases the detection of ICG points up to
an effective rate of 88% for dataset S and 75% for dataset V. The
effective rate is calculated after removing the number of ICG
complexes with subtype ABEXYOZu, which does not contain any
ICG characteristic points to detect (Benouar et al., 2018), a
significant improvement compared to automatic detection.
Without using NARX prediction, only the typical ABEXYOZ
complexes allowed for relatively direct detection of the
characteristic points; as a result, from all the ICG complexes
(typical and atypical), detection was possible in only 21% of the
cases for dataset S and 30% for dataset V (Benouar et al., 2018).

The results in Table 5 show the quality of forecasting the ICG
characteristic points since it mainly focuses on themost variate segment
of the ABEXYOZ complexwhere a higher number ofmissed points was
previously noticed in the characteristic points X, Y, O, and Z. Thus, it
can be observed in this study that there is a significant enhancement of
detecting ICG points previously undetected.

4.3 Selection of X in ABEXYOZ subtypes with
multiple candidates

The ABEXYOZ subtype that has more similarities with the
typical ICG complex is ABEXYOZ2; however, this subtype has two
X candidates (X1 or X2). Thus, this model approach enables a
successful evaluation to find what is the best suitable point among
X1 and X2 to be the actual X used in the calculation of LVET.

Since the model was trained with the typical ICG waveform
(ABEXYOZ0), it is trained to detect the true X. In Figure 13, we can
notice that the standard deviation between the target and the
predicted X is less in X2 compared to X1, and it is the opposite
for dataset S, as shown in Figure 13B. From the literature, X1 is
considered as an X when the X2 waveform is non-pronounced. The
results suggest a dependency on the recorded ICG measurements,
which makes the NARX model a useful tool to evaluate the ICG
subtypes and provide information to select more accurate, dynamic
prediction, which leads to accurate detection of characteristic points
in the different ABEXYOZ subtypes according to the datasets used.

5 Conclusion and future remarks

In this work, a predictive model customized specially for the
different ABEXYOZ subtypes of the ICG recordings was built. The
model fit data acquired with different acquisition devices. The model
was created using a recurrent artificial neural network, where the
typical ICG waveforms ABEXYOZ0 were used to train the model.
Thus, the trained model can predict the right position of the
characteristic points in the other ABEXYOZ subtypes where the
position is unclear, including selection of the correct X when the
ABEXYOZ subtypes present two potential Xs (X1 and X2).

Implementing NARX would enable the possibility to set up an
algorithm to select the X point among candidates in each subtype,
allowing for a personalized approach. This possibility will be studied
further.

Knowing that without the NARX predictive model, we could
detect only 21% for dataset S and 30% for dataset V, the result of
applying NARX increases the detection rate of ICG points to 88% for
dataset S and 75% for dataset V.

The next step is to evaluate in depth the impact of this newly
increased detection of characteristic ICG points in the calculation of
LVET times. For such a task, in addition to ICG recordings,
thermodilution measurements will be required to allow for a
proper comparative analysis.

FIGURE 14
Percentages of missing ICG characteristic points after applying the NARX to each dataset V and S.
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Appendix A

Accuracy parameter equation.

Appendix B

Regression plots result examples.

TABLE A1 Accuracy parameters.

Definition Equation

MSE, mean squared error: It measures the average squared difference between the
predicted and actual values of the target variable. Lower values of MSE indicate
better performance, with 0 being the ideal value (which indicates perfect prediction)

MSE � 1/n *∑
n

i�1
(yi − ŷi)² n: the number of data points, yi: the actual value of the target

variable for the ith data point, and ŷi: the predicted value of the target variable for the ith
data point

RMSE, root mean squared error: It takes the square root of the average squared
difference between the predicted and actual values

RMSE = sqrt (MSE)

MAE, mean absolute error: It is a common metric used to evaluate the performance
of a regression model. It measures the average absolute difference between the
predicted and actual values of the target variable

MAE � 1/n *∑
n

i�1
|yi − ŷi|

VEcv, variance error of cross-validation: It is a metric used to estimate the prediction
error of a regression model using cross-validation

VEcv � (1 − (∑
n

i�1(yi−ŷi)2
∑n

i�1(yi−�yi)2
))* 100 n is the number of observations in a validation dataset, yi

is the observed value in the validation data, ŷi is the predicted value, and �yi is mean of the
observed values

FIGURE B1
Regression plot result examples for forecasting missing points in ABEXYOZ subtypes in dataset V.
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FIGURE B2
Regression plot result examples for forecasting missing points in ABEXYOZ subtypes in dataset S.
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