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Abstract When Sp(2n, C) acts on the flag variety of SL(2n, C), the orbits are in
bijection with fixed point free involutions in the symmetric group S2n . In this case,
the associated Kazhdan–Lusztig–Vogan polynomials Pv,u can be indexed by pairs
of fixed point free involutions v ≥ u, where ≥ denotes the Bruhat order on S2n .
We prove that these polynomials are combinatorial invariants in the sense that if
f : [u, w0] → [u′, w0] is a poset isomorphism of upper intervals in the Bruhat order
on fixed point free involutions, then Pv,u = Pf (v),u′ for all v ≥ u.

Keywords Kazhdan–Lusztig–Vogan polynomials · Special partial matching ·
Combinatorial invariance

1 Introduction

Let (W, S) be a Coxeter system with W ordered by the Bruhat order. Every interval
[u, v] in this poset comes with an associated Kazhdan–Lusztig (KL) polynomialPu,v ,
introduced in [13]. WhenW is a Weyl group, the polynomials carry detailed informa-
tion about the singularities of the Schubert varieties indexed by W [14]. Evaluated at
1, they provide composition factor multiplicities of Verma modules; this is one of the
original Kazhdan–Lusztig conjectures from [13] which was independently proven by
Beilinson and Bernstein [1] and by Brylinski and Kashiwara [5].
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The KL polynomial Pu,v can be computed merely in terms of the structure of the
lower interval [e, v], where e ∈ W is the identity element, which is the minimum in
the Bruhat order. The procedure relies on detailed knowledge about the elements of
[e, v]. It has, however, been conjectured independently by Dyer [8] and Lusztig that
the KL polynomial is an invariant of the poset isomorphism class of [u, v]. This is
known as the combinatorial invariance conjecture. Most substantial progress towards
this conjecture has had to do with lower intervals and is captured in the following
statement:

Theorem 1.1 Let v, v′ ∈ W and suppose f : [e, v] → [e, v′] is a poset isomorphism.
Then, Pu,v = P f (u),v′ for all u ≤ v.

For W of general type, this result is due to Brenti et al. [4] and independently to
Delanoy [6]. The methods build on earlier work by Brenti [3] and du Cloux [7], where
the result was established in certain types.

Themore general family ofKazhdan–Lusztig–Vogan (KLV)polynomialswas intro-
duced in [15,18]. Let G be a complex connected reductive algebraic group with
non-compact real form GR. Let θ : G → G be the complexification of a Cartan
involution of GR. The fixed point subgroup K = Gθ acts on the flag variety G/B
with finitely many orbits [16], B being a θ -stable Borel subgroup. Each of the indices
u and v of a KLV polynomial Pu,v consists of a K -orbit closure together with a choice
of local system on it. These polynomials describe the singularities of K -orbit closures
and, evaluated at 1, provide character coefficients for GR-representations [15,18].

In this paper, we confine ourselves to the setting G = SL(2n, C), GR = SU∗(2n),
K = Sp(2n, C). The following combinatorially appealing situation then arises: we
may think of the indices u and v simply as fixed point free involutions in the symmetric
group S2n of permutations of {1, . . . , 2n}. Moreover, Pu,v is nonzero if and only if
u ≥ v in the Bruhat order on S2n . Denote by Br(F2n) its subposet induced by the
fixed point free involutions. The maximum of Br(F2n) is the reverse permutation w0,
the longest element in S2n . Our main result is the following combinatorial invariance
assertion for KLV polynomials:

Theorem 1.2 If f : [u, w0] → [u′, w0] is a poset isomorphism of upper intervals in
Br(F2n), then Pv,u = Pf (v),u′ for all fixed point free involutions v ≥ u.

The fixed point free involutions u ∈ S2n which satisfy u(i) > n for all i ≤ n form a
subposet of Br(F2n) which is isomorphic to the dual of the Bruhat order on Sn . When
restricted to such u, Theorem 1.2 specializes to the type A version of Theorem 1.1,
which is the main result of Brenti’s aforementioned work [3].

In order to briefly outline the proof idea, let us first describe Brenti’s approach
from [3]. First, Brenti observed that combinatorial invariance of KL polynomials is
equivalent to that of the associated KL R-polynomials. At the heart of the recurrence
relation for the R-polynomials is the map x �→ xs for x ∈ W , s ∈ S. Brenti’s
key idea was to replace such maps by special matchings, which are defined solely
in terms of poset properties. By studying the possible special matchings of lower
Bruhat intervals, Brenti was able to deduce the key fact, namely that the resulting
poset theoretic recurrence actually is well-defined and computes the R-polynomials.

Our overall approach is very similar to that of Brenti. Instead of KL R-polynomials,
we study what we call Q-polynomials, which are a slight variation of Vogan’s KLV

123



J Algebr Comb (2018) 47:543–560 545

R-polynomials. In our setting, Vogan’s recurrence for the latter boils down to a recur-
rence for Q-polynomials which relies on the conjugation map x �→ sxs of fixed point
free involutions x . In order to obtain a poset theoretic recurrence, we replace such
conjugation maps by special partial matchings which are similar to special match-
ings, except that they may have fixed elements. Again, the crux is to show that this
indeed yields a recurrence which computes Q-polynomials. Rather than fixed point
free involutions, we mostly work with the set of twisted identities ι ⊂ S2n ; multipli-
cation by w0 provides a bijection between the two which reverses the Bruhat order.
This viewpoint gives us convenient access to combinatorial tools already developed
for twisted identities.

The remainder of the paper is structured as follows. In the next section, we agree
on notation and recall important definitions and tools. Section 3 contains some obser-
vations about twisted identities. Special partial matchings are introduced in Sect. 4,
where technical assertions about the structure of such partial matchings are collected.
In the final section we use them in order to prove our main result.

2 Preliminaries

Let n be a positive integer and denote by W = S2n the symmetric group of permuta-
tions of the set [2n] = {1, . . . , 2n}. Then, W is a Coxeter group with set of Coxeter
generators S = {s1, . . . , s2n−1}, where the si = (i i + 1) are the adjacent transposi-
tions. If w = si1 · · · sik , the word si1 · · · sik is an expression for w which is reduced if
k is minimal; then k = �(w) is the number of inversions of w, i.e. the number of pairs
1 ≤ i < j ≤ 2n such that w(i) > w( j).

A generator s ∈ S is called a (right) descent of w ∈ W if �(ws) < �(w). The set of
descents ofw is denoted by DR(w). Clearly, si ∈ DR(w) if and only ifw(i) > w(i+1).

2.1 Twisted involutions and twisted identities

Define an involutive automorphism θ : W → W by θ(si ) = s2n−i . This is the only
nontrivial (if n > 1) automorphism of W which preserves S.

Let I = I(θ) = {w ∈ W | θ(w) = w−1} be the set of twisted involutions and
ι = ι(θ) = {θ(w−1)w | w ∈ W } ⊂ I the subset of twisted identities. In other words,
ι is the orbit of the identity element e when W acts (from the right, say) on itself by
twisted conjugation. Let ∗ denote this action; i.e. x ∗ w = θ(w−1)xw for x, w ∈ W .

Next we recall some properties of I and ι. All unjustified claims can be gleaned
from [17] or [10]. Our notation follows the latter reference. Define a set of symbols
S = {si | i ∈ [2n− 1]}. There is an action of the free monoid S∗ on the setW defined
by

ws =
{

ws if w ∗ s = w,

w ∗ s otherwise.
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It is convenient to use the notational conventionswsi1 · · · sik = (· · · ((wsi1)si2) · · · )sik
and si1 · · · sik = esi1 · · · sik , where e is the identity permutation. For instance when
n = 2, s1 = s3s1, s2 = s2, and s1s2 = s2s3s1s2, etc.

The orbit of e under this action is I. Thus, if w ∈ I, we have w = si1 · · · sik for
some i j . We refer to the word si1 · · · sik as an S-expression for w and say it is reduced
if k is minimally chosen among all such expressions; in that case ρ(w) = k is called
the rank of w. Here are some key properties of � and ρ:

Lemma 2.1 Suppose w ∈ I, s ∈ S. Then,

• �(w ∗ s) = �(w) ⇔ w ∗ s = w,
• ρ(ws) = ρ(w) ± 1,
• ρ(ws) = ρ(w) − 1 ⇔ s ∈ DR(w),
• �(w) ≤ 2ρ(w),
• �(w) = 2ρ(w) ⇔ w ∈ ι.

A useful consequence is that ws ∈ ι holds whenever w ∈ ι, s ∈ DR(w). Thus, if
w ∗ s = w for w ∈ ι, s ∈ S, then s /∈ DR(w).

Just as with ordinary expressions, the Coxeter relations can be applied to reduced
S-expressions: · · · si si+1si · · · = · · · si+1si si+1 · · · and · · · si s j · · · = · · · s j si · · · if
|i − j | > 2. Unlike for ordinary expressions this is not in general the case for arbitrary
S-expressions. For example, with n = 2,

s2s3s2s1s2 = s2s1s3 = s1s3s2s1s3 = 4231

which is different from

s2s3s1s2s1 = s1s2s3 = s2s3s1s2s3 = 3421.

2.2 The Bruhat order

When applied to elements of W , ≤ denotes the Bruhat order. We shall make use of
several well-known characterisations which all can be found in [2]:

Theorem 2.2 (Subword property of W ) Let x, y ∈ W, and suppose si1 · · · sik is a
reduced expression for y. Then, x ≤ y holds if and only if x = si j1 · · · si jl for some
1 ≤ j1 < · · · < jl ≤ k.

For x ∈ W , let xi,k denote the i-th element when x(1), x(2), . . . , x(k) are rear-
ranged increasingly.

Theorem 2.3 (Tableau criterion)Given x, y ∈ W, the following conditions are equiv-
alent:

(i) x ≤ y.
(ii) xi,k ≤ yi,k for all sk ∈ DR(x) and 1 ≤ i ≤ k.
(iii) xi,k ≤ yi,k for all sk ∈ S\DR(y) and 1 ≤ i ≤ k.

Theorem 2.4 Given x, y ∈ W, x ≤ y holds if and only if x[i, j] ≤ y[i, j] for all
i, j ∈ [2n], where w[i, j] = |{k ∈ {i, . . . , 2n} | w(k) ≤ j}|.
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The Bruhat order on W is a graded poset with minimum element the identity
permutation e, maximum element the reverse permutation w0 defined by w0(i) =
2n+1−i , and rank function �. For any subset X ⊆ W , Br(X) indicates the subposet of
the Bruhat order induced by X . Obviously, the previous three results may be applied in
the context of any Br(X) just by replacingW with X . We next discuss some additional
tools which are applicable when X = I. Because W is a Weyl group, most are
consequences of Richardson and Springer’s [17, Section 8], although the terminology
there differs somewhat from that employed here. In our language, everything can be
found in [10].

The following counterpart of Theorem 2.2 can be deduced from [17, Corollary
8.10]:

Theorem 2.5 (Subword property of I) Let x, y ∈ I, and suppose si1 · · · sik is a
reduced S-expression for y. Then, x ≤ y holds if and only if x = si j1

· · · si jl for some
1 ≤ j1 < · · · < jl ≤ k.

Comparing Theorem2.2with Theorem2.5 it should not be too surprising that Br(I)

is graded with rank function ρ. This is in fact also true for Br(ι), where ρ = �/2. Both
have e as minimum element. The maximum in Br(I) is w0, whereas the maximum in
Br(ι) is w0s1s3 · · · s2n−1.

Let I2n be the set of (ordinary) involutions inW . There exists a poset isomorphism
between Br(I2n) and the dual of Br(I) as we will show below. Incitti [12] showed that
Br(I2n) is Eulerian. In particular it and its dual Br(I) are thin, meaning that all rank
two intervals consist of exactly four elements. Rank two intervals in the subthin poset
Br(ι) have either four or three elements.

The lifting property is a classical result on Br(W ); see [9, Theorem 1.1]. We shall
not make explicit use of it, but instead use the following completely analogous result
for Br(I) which follows from [17, Proposition 8.13]:

Lemma 2.6 (Lifting property ofI)Let u, w ∈ I with u ≤ w and suppose s ∈ DR(w).
Then,

(i) us ≤ w.
(ii) s ∈ DR(u) ⇒ us ≤ ws.
(iii) s /∈ DR(u) ⇒ u ≤ ws.

Consider the following subset of ι:

Sn = {w ∈ ι | sn 
≤ w}.

Every element in Sn has a reduced S-expression which consists entirely of letters
in {s1, . . . , sn−1}. Given such an expression, one obtains a reduced expression for an
element in Sn by removing the lines under the letters: si1 · · · sik �→ si1 · · · sik . This map
is a bijection ϕ : Sn → Sn . It preserves the Bruhat order, yielding Br(Sn) ∼= Br(Sn).
When restricted to Sn , the main results of the present paper coincide with Brenti’s
results on the symmetric group [3].

123



548 J Algebr Comb (2018) 47:543–560

2.3 Permutation diagrams, symmetries and cover relations

The inversion map x �→ x−1 is a poset automorphism of Br(W ) and, since it preserves
ι, of Br(ι). Left and right multiplication by the reverse permutation w0 yield poset
antiautomorphisms of Br(W ). Composing them, we recover the automorphism θ ; i.e.
θ(w) = w0ww0. Therefore, x �→ w0x and x �→ xw0 provide poset isomorphisms
Br(I) ∼= Br(I2n)∗, where P∗ denotes the dual poset of P . Under both isomorphisms,
ι is sent to the conjugacy class of w0, namely the set F2n ⊂ W of fixed point free
involutions, so that Br(ι) ∼= Br(F2n)∗.

We shall sometimes represent w ∈ W by means of its diagram, i.e. the graph of w.
It has a dot in the plane with coordinates (i, j) whenever w(i) = j . Theorem 2.4 can
then be interpreted as follows: x ≤ y iff for every (i, j) ∈ [2n]2, there are at least as
many dots weakly southeast of (i, j) in the diagram of y as there are in the diagram
of x .1

Left multiplication by w0 amounts to an upside down flip of the diagram, whereas
taking inverses is reflection in the diagonal line through (1, 1) and (2n, 2n). It follows
that I consists of the permutations whose diagrams are invariant under reflection in
the line through (1, 2n) and (2n, 1), and that ι is the subset of elements without any
dots on this line.

Two dots in a permutation diagram form a rise if the rightmost dot is also the
uppermost; otherwise the dots form a fall.

We shall reserve the notation u �w to mean that u is covered by w in Br(I) (hence
in Br(ι) if u, w ∈ ι). In [12], Incitti characterised the cover relation of Br(I2n) in
terms of the diagrams of the involved involutions. By taking duals and/or restricting,
we obtain for free the cover relations in Br(I), Br(ι) and Br(F2n). We reproduce
Incitti’s description in Fig. 1, adapted to the setting of Br(I). Observe that only two of
the six kinds of covers, namely those without dots on the diagonal, occur in Br(ι). In
particular, every cover inBr(ι) (respectively,Br(F2n)) is given by twisted (respectively,
ordinary) conjugation by a transposition. That is, if u �w and u, w ∈ ι, then u = w ∗ t
(respectively, w0u = tw0wt) for some transposition t .

By inspecting Fig. 1, the next lemma follows immediately.

Lemma 2.7 Given w ∈ I\ι, there exists at most one u ∈ ι such that u � w.

Most of the actionof the present paper takes place inBr(ι).However, other subposets
of Br(W ) turn up frequently in our arguments. In order to mitigate possible confusion
we shall employ the following poset interval notation for u, w ∈ W :

[u, w] = {x ∈ W | u ≤ x ≤ w},
[u, w]I = [u, w] ∩ I,

[u, w]ι = [u, w] ∩ ι.

1 It is equivalent, and probably more common, to replace “southeast” by “northwest” in this statement,
since 180◦ rotation of diagrams coincides with the Bruhat order automorphism θ .
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Fig. 1 All types of covers that occur in Br(I). If w covers u, the diagram of u is indicated by white dots
and w is represented by black dots. Dots shared by both diagrams are omitted. Shaded regions are empty.
The pictures are reproduced from [12]

Some examples can be found in Fig. 2.

2.4 Kazhdan–Lusztig–Vogan polynomials

Introduced in [15,18], the Kazhdan–Lusztig–Vogan (KLV) polynomials are at the
heart of the representation theory of real reductive groups much in the same way that
Kazhdan–Lusztig polynomials describe representations for complex groups.

In general, a KLV polynomial Pγ,δ(q) is indexed by two local systems γ and δ on
orbits of a symmetric subgroup K on a flag manifold G/B. In the present paper we
shall restrict to the setting G = SL(2n, C), K = Sp(2n, C). In this case, every local
system is trivial and the orbits are indexed by ι (or, as was done in the introduction,
by F2n ; hence the title of the present paper). Moreover, Br(ι) coincides with the
inclusion order among orbit closures; the details of this correspondence are described
by Richardson and Springer [17, Example 10.4]. Thus, we may in this setting consider
KLV polynomials to be indexed by pairs of twisted identities. When doing so, we shall
use the superscript ι to avoid confusion with the polynomials indexed by F2n in the
introduction. In other words, P ι

u,w = Pw0u,w0w whenever u, w ∈ ι. For fixed w ∈ ι,
we then have the following identity in the free Z[q, q−1]-module with basis ι:

q−ρ(w)
∑

v∈[e,w]ι
P ι

v,w(q)v =
∑

v∈[e,w]ι

∑
u∈[e,v]ι

(−1)ρ(u)−ρ(v)q−ρ(v)P ι
v,w(q−1)Ru,v(q)u;

(1)
cf. Vogan’s [18, Corollary 6.12]. Here, Ru,v denotes a KLV counterpart of the classical
Kazhdan–Lusztig (KL) R-polynomials.
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Fig. 2 Pictures of Br(ι) = [e, s1s2s1s3s4s2]ι (left) and [e, s2s1s3s2]I (right) when n = 3. Twisted
identities correspond to black dots,whereaswhite dots signal elements ofI\ι. The labels are index sequences
of reduced S-expressions. For example, “232” represents the twisted involution s2s3s2 = s3s4s2s3s2

Introducing the convenient variation Qu,w(q) = (−q)ρ(w)−ρ(u)Ru,w(q−1) and
comparing the coefficients of a fixed element u ∈ ι on each side of (1) one obtains
the, from the theory of KL polynomials, familiar-looking

qρ(w)P ι
u,w(q−1) = qρ(u)

∑
v∈[u,w]ι

P ι
v,w(q)Qu,v(q). (2)

Together with the restrictions P ι
x,x = 1 and deg P ι

u,w ≤ (ρ(w) − ρ(u) − 1)/2, this
recurrence uniquely determines the KLV polynomials. In order to use it, one must first
know the Q-polynomials (which are polynomials). They are completely determined
by the following recurrence and initial values; see [11, Proposition 5.3].

Proposition 2.8 Let u, w ∈ ι. If s ∈ DR(w), then

Qu,w(q) =

⎧⎪⎨
⎪⎩
Qu∗s,w∗s(q) if u ∗ s � u,

qQu∗s,w∗s(q) + (q − 1)Qu,w∗s(q) if u ∗ s � u,

qQu,w∗s(q) if u ∗ s = u.

Moreover Qu,u(q) = 1, and Qu,w(q) = 0 if u 
≤ w.

When restricted to u, w ∈ Sn ⊂ ι, Ru,w coincides with Qu,w; this is then the
ordinary KL R-polynomial of Sn indexed by ϕ(u) and ϕ(w), where ϕ is the bijection
ϕ : Sn → Sn introduced above, and the P ι

u,w of course restrict to the ordinary KL
polynomials, i.e. Pϕ(u),ϕ(w) = P ι

u,w.
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3 Structural properties of ι

In this section we obtain some information about the structure of ι which shall be of
use in the sequel.

Lemma 3.1 Suppose u, u′, w,w′ ∈ ι are such that |[u, w]ι| = |[u′, w′]ι| = 3. Then,
|[u, w]ι ∩ [u′, w′]ι| 
= 2.

Proof Since Br(I) is thin, the corresponding intervals [u, w]I and [u′, w′]I have
four elements each. Hence, the interval (w0w,w0u) in Br(I2n) consists of exactly
two elements x and y where x is fixed point free and y has exactly two fixed points.
Now consult Incitti’s [12] characterisation of the covering relation in Fig. 1. The only
possibility is that w0w < y is a cover as in the lower middle picture, y < w0u is
as in the upper left, w0w < x lower right and, finally, x < w0u is of the lower left
form. All except four dots in two common two-cycles are left unchanged by all these
cover operations. In particular, this implies that the disjoint cycle decompositions of
w0w, x and w0u have n − 2 two-cycles in common. Inspecting any two of these three
elements is sufficient to determine all those common two-cycles. Since exactly three
fixed point free involutions have n − 2 fixed two-cycles in common, we conclude that
|[u, w]ι ∩ [u′, w′]ι| ≥ 2 implies [u, w]ι = [u′, w′]ι. ��

The preceding lemma immediately yields a simple description of the twisted iden-
tities that cover exactly one element:

Lemma 3.2 Let w ∈ ι and suppose |{x ∈ ι | x � w}| = 1. Then, either w = sn−1sn
or ρ(w) = 1.

Proof It is easy to verify the assertion for all w that satisfy ρ(w) ≤ 2 or sn−1sn � w.
Suppose w is some other element and that x � w. Applying induction on the rank, we
may assume x covers at least two elements. By Lemma 3.1, so does w. ��

We shall only need the following simple lemma for w ∈ ι. Proving it for w ∈ I
costs, however, no extra effort.

Lemma 3.3 Define τ = si+1si si−1, where 2 ≤ i ≤ n − 2, and let w ∈ I. Then,
τ � w if and only if w([i − 1]) ⊆ [i + 1].
Proof Let w ∈ W and notice that τ = s2n−(i−1)s2n−i s2n−(i+1)si+1si si−1.

Thus, DR(τ ) = {si−1, s2n−i−1}. Following the notation used in Theorem 2.3,
(τ1,i−1, . . . , τi−1,i−1) = (1, . . . , i − 2, i + 2) and (τ1,2n−i−1, . . . , τ2n−i−1,2n−i−1) =
(1, . . . , 2n−i−2, 2n−i+2).Now, τ ≤ w if andonly if τk,i−1 ≤ wk,i−1 for all 1 ≤ k ≤
i−1 and τk,2n−i−1 ≤ wk,2n−i−1 for all 1 ≤ k ≤ 2n−i−1.Therefore, τ ≤ w if andonly
if max(w(1), . . . , w(i −1)) ≥ i +2 and max(w(1), . . . , w(2n− i −1)) ≥ 2n− i +2.
Hence τ � w if and only if w([i − 1]) ⊆ [i + 1] or w([2n − i − 1]) ⊆ [2n − i + 1].
If w ∈ I, diagram symmetry yields that both inclusions are equivalent, and the result
follows. ��
Lemma 3.4 Let a = si si−1si and b = si si+1si for some 2 ≤ i ≤ n − 2. If c ∈ ι

covers both a and b, then c = si si−1si+1si .
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Proof If sn ≤ c, the subword property shows that c is obtained by inserting the letter
sn somewhere inside some reduced S-expression for a. Since sn commutes with every
generator si ≤ a, we may in fact assume that sn is inserted as the first letter. This,
however, contradicts c ∈ ι. We conclude that c ∈ Sn . Therefore, the assertion of
the lemma is equivalent to c′ = si si−1si+1si being the only element which covers
a′ = si si−1si and b′ = si si+1si in the (ordinary) Bruhat order on Sn . To see that
this holds, note that the reduced expressions that were just used for a′ and b′ are the
only ones that contain only single occurrences of si−1 and si+1, respectively. Hence
an element which covers both must have a reduced expression which simultaneously
can be obtained by inserting si−1 into si si+1si and by inserting si+1 into si si−1si . ��

The final result of this section shows that a twisted identity is nearly always deter-
mined by the elements that it covers.

Proposition 3.5 Suppose v,w ∈ ι cover the same set of elements inBr(ι). Then either
v = w or ρ(v) = ρ(w) ≤ 2.

Proof Assume that v 
= w and that u � v ⇔ u � w for u ∈ ι. Choose descents
s ∈ DR(v) and s′ ∈ DR(w), if possible so that vs 
= ws′.

Suppose first that, indeed, vs 
= ws′ and let τ = vs′. By the lifting property, w � τ .
Lemma 2.7 then implies τ ∈ ι. We claim that τ covers no element except v and w.
Indeed, if v 
= x � τ , lifting yields xs′ � v and thus xs′ � w. Since ws′ is the only
element which does not have s′ as a descent among those covered by w, xs′ = ws′
so that x = w as needed. Now, lifting shows vss′ � vs. Thus, τ has a reduced S-
expression which ends with s′ss′. In particular, {s, s′} = {si , si+1} for some i , and
τ ss′s = τ s′ss′. This means that the {s, s′}∗-orbit of τ contains exactly six elements,
ordered as τ ss′s � vs, ws′ � v,w � τ . Assuming without loss of generality that s = si ,
it follows that the disjoint cycle decompositions of the corresponding fixed point free
involutions are as follows:

w0τ = (a i)(b i + 1)(c i + 2) · · · ,

w0v = (a i)(b i + 2)(c i + 1) · · · ,

w0w = (a i + 1)(b i)(c i + 2) · · · ,

w0(vs) = (a i + 1)(b i + 2)(c i) · · · ,

w0(ws′) = (a i + 2)(b i)(c i + 1) · · · ,

w0(τ ss
′s) = (a i + 2)(b i + 1)(c i) · · · ,

for some a < b < c; here the trailing dots indicate the remaining two-cycles that all
six elements have in common. Since conjugation by a transposition alters either zero
or two of the two-cycles of a fixed point free involution, it follows at once from this
description that (i) neither v nor w covers any element except vs and ws′, and (ii)
vs and ws′ cover no common element except τ ss′s. Lemma 3.1 then implies that vs
and ws′ can cover no element at all (common or not) except τ ss′s. By Lemma 3.2,
ρ(vs) = ρ(ws′) = 1 as desired.

It remains to consider the case vs = ws′ = x . Since this was not possible to avoid,
no descent of x commutes with either s or s′. If x 
= e, this implies DR(x) = {si }

123



J Algebr Comb (2018) 47:543–560 553

and {s, s′} = {si−1, si+1} for some i . If in addition xsi has a descent, say s j , it cannot
commute with si . Thus, s j ∈ {s, s′}, implying that either v or w has si as a descent, a
contradiction. Hence ρ(x) ≤ 1. ��

4 Special partial matchings

Let 
 be a finite poset equipped with a unique maximum element 1̂ and let ≺ denote
the cover relation.

Definition 4.1 A special partial matching, or SPM, of 
 is a function M : 
 → 


such that

• M2 = id.
• M(1̂) ≺ 1̂.
• For all x ∈ 
, either M(x) ≺ x , M(x) = x or x ≺ M(x).
• If x ≺ y and M(x) 
= y, then M(x) < M(y).

An SPMwithout fixed points is nothing but a special matching in the sense of Brenti
[3]. Like special matchings, SPMs restrict to principal order ideals:

Proposition 4.2 Suppose M is an SPM of 
 and that M(x) ≤ x. Then, M preserves
the subposet Ix = {y ∈ 
 | y ≤ x}. In particular, M restricts to an SPM of Ix if
M(x) ≺ x.

Proof We must show M(y) ≤ x for all y ≤ x . Pick y < x and assume by induction
M(y′) ≤ x for all x ≥ y′ > y. Choose x ≥ z � y. Then, either M(y) = z ≤ x or
M(y) < M(z) ≤ x . ��

Special matchings were designed to mimic multiplication by a Coxeter generator,
i.e. maps of the form x �→ xs, in Br(W ). Similarly, the idea behind SPMs is to capture
the behaviour of the twisted conjugation maps x �→ x ∗ s in Br(ι).

Theorem 4.3 Let w ∈ ι and s ∈ DR(w). Then, x �→ x ∗ s is an SPM of the lower
interval [e, w]ι.
Proof The lifting property shows that [e, w]ι is preserved by x �→ x ∗ s. The first
three properties required by Definition 4.1 are readily checked. It remains to verify
the fourth.

Suppose x � y and x ∗ s 
= y. We must show x ∗ s < y ∗ s. If x ∗ s 
= x and
y ∗ s 
= y, this is immediate from the lifting property. The nontrivial cases that remain
to be considered are x ∗ s = x , y ∗ s < y and x ∗ s > x , y ∗ s = y, respectively.
The former case is, however, impossible since it would imply xs > x 
= ys < y
contradicting the lifting property. The latter is in fact also impossible; it implies that
ys covers the two twisted identities xs and y which contradicts Lemma 2.7. ��

We shall refer to an SPM of the form described in Theorem 4.3 as a conjugation
SPM.
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Lemma 4.4 Letw ∈ ι. Suppose M is an SPM of [e, w]ι and ρ(u) ≥ 2 for u ∈ [e, w]ι.
Then, M(u) = u if and only if all v ∈ ιwith v�u satisfy either M(v)�v or M(v) = v.

Proof Suppose first thatM(u) = u and let v�u. SinceM is an SPM,M(v) < M(u) =
u. Hence, v � M(v).

Now assume that v � M(v) holds for every v � u. In particular, M(u) � u.
Suppose next that M(u) � u. By Lemma 3.2, u′ � M(u) for some u′ 
= u. Since
M(u′) < M(M(u)) = u, we have v � u and M(v) � v for v = M(u′), contradicting
the hypothesis. We conclude that M(u) = u. ��

Taking w = w1 = w2, the next proposition in particular shows that an SPM of
[e, w]ι is completely determined by its restriction to the atoms, i.e. the elements that
cover the identity.

Proposition 4.5 Let w1, w2 ∈ ι and suppose M1 and M2 are SPMs of [e, w1]ι and
[e, w2]ι, respectively, such that M1(u) = M2(u) for all u ∈ [e, w1]ι ∩ [e, w2]ι with
ρ(u) ≤ 1. Then, M1(u) = M2(u) for all u ∈ [e, w1]ι ∩ [e, w2]ι.
Proof Let M1 and M2 satisfy the hypotheses of the proposition. Employing induction
on the length of u, suppose that ρ(u) ≥ 2 and that for all v with ρ(v) < ρ(u),
M1(v) = M2(v). We consider three cases.
Case 1 IfM1(u)�u, then u = M1(M1(u)) = M2(M1(u)) by the induction assumption.
Therefore, M1(u) = M2(u).
Case 2 Suppose that M1(u) = u. By Lemma 4.4 and the induction hypothesis, every
v � u satisfies either M2(v) = M1(v) = v or M2(v) = M1(v) � v. Using Lemma 4.4
again, we conclude M2(u) = u = M1(u).
Case 3 Assume now M1(u) � u and M2(u) � u; interchanging the roles of M1 and
M2 if necessary, this is the only remaining case. Let A1 = {v ∈ ι\{u} | v � M1(u)}
and A2 = {v ∈ ι\{u} | v � M2(u)}. It follows immediately from Definition 4.1 that
Ai = {Mi (x) | Mi (x)�x �u}. Thus, A1 = A2 is implied by the induction assumption,
so M1(u) and M2(u) cover the same set of elements. Since ρ(M1(u)) = ρ(M2(u)) =
ρ(u) + 1 ≥ 3, M1(u) = M2(u) follows from Proposition 3.5. ��
Corollary 4.6 Suppose M is an SPM of [e, w]ι for some w ∈ ι. If there exists an
s ∈ S such that M(x) = x ∗ s for all x ∈ [e, w]ι with ρ(x) ≤ 1, then M(x) = x ∗ s
for all x ∈ [e, w]ι.
Proof The result follows from Proposition 4.5 if we are able to construct w2 ∈ ι with
s ∈ DR(w2) such that w2 ≥ w1 = w. Observe that si ∈ DR(ŵ) if and only if i is
even, where ŵ = w0s1s3 · · · s2n−1 denotes the maximum of Br(ι).

We may consider W to be embedded in the symmetric group of permutations of
{0, 1, . . . , 2n + 1} with generators S′ = S ∪ {s0 = (0 1), s2n = (2n 2n + 1)} on
which we have the automorphism θ ′ given by si �→ s2n−i . Then θ ′ restricts to θ onW
and ι embeds in ι(θ ′). Moreover, the maximum of ι(θ ′), call it ŵ′, has si as descent if
and only if i is odd. Hence, either w2 = ŵ or w2 = ŵ′ does the job. ��

The recurrence relation in Proposition 2.8 relies on a conjugation SPM. Our goal
is to replace it with an arbitrary SPM in order to arrive at a combinatorially defined
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recurrence for the Q-polynomials. In order to do so, we need a good understanding
of non-conjugation SPM behaviour. The next lemma imposes strong restrictions on
such partial matchings.

Lemma 4.7 Suppose M is an SPM of [e, w]ι for w ∈ ι. If M is not a conjugation
SPM, then M(e) = si for some 2 ≤ i ≤ n − 2 and one of the following two sets of
conditions holds:

(1) M(si−1) = si−1si , M(si+1) = si si+1 and si+1si si−1 
≤ w.
(2) M(si−1) = si si−1, M(si+1) = si+1si and si−1si si+1 
≤ w.

Proof Let M be an SPM of [e, w]ι.
First, consider the case M(e) = e. We cannot have M(si ) = si for every si ≤ w

because Lemma 4.4 would then imply that M(u) = u for all u ≤ w contradicting that
M is an SPM. Hence M(si ) = si s j for some i and j . Then x � si s j , x ∈ ι, can only
happen if x = si ; otherwise M(x)� x which is impossible. By Lemma 3.2, this means
si = sn−1 = sn+1 and j = n. In other words, M(u) = u ∗ sn for all u ∈ [e, w]ι with
ρ(u) ≤ 1, whence M is a conjugation SPM by Corollary 4.6.

Second, suppose M(e) = si , i < n. For i 
= j < n, the only elements which
cover both si and s j are si s j = s j s2n−i and s j si = si s2n− j ; they coincide if and
only if i 
= j ± 1. If M is neither twisted conjugation by si nor by s2n−i we must
therefore have M(s j ) = si s j 
= s j si and M(sk) = sksi 
= si sk for some j, k < n,
s j , sk ≤ w. This is only possible if { j, k} = {i−1, i+1}. In particular, 2 ≤ i ≤ n−2.
Assume M(si−1) = si−1si and M(si+1) = si si+1, the other case being entirely
similar. Suppose in order to obtain a contradiction si+1si si−1 ≤ w. By the subword
property, si+1si ≤ w and si si−1 ≤ w. Since M(si+1si ) covers both si+1si and
si si+1,M(si+1si ) = si si+1si . Similarly,M(si si−1) = si si−1si . Now,M(si+1si si−1)

covers si si+1si and si si−1si , so M(si+1si si−1) = si si−1si+1si by Lemma 3.4. This
is however impossible since si+1si si−1 � si si−1si+1si . ��

A conjugation SPM may have fixed points. The upcoming proposition, however,
states that any non-conjugation SPM is fixed point free and commutes with some fixed
point free conjugation SPM.

Proposition 4.8 Let w ∈ ι and assume M is an SPM of [e, w]ι which is not a con-
jugation SPM. Then M has no fixed point. Moreover, there exists s ∈ DR(w) such
that w ∗ s 
= M(w) and, furthermore, u ∗ s 
= u and M(u ∗ s) = M(u) ∗ s for all
u ∈ [e, w]ι.
Proof Lemma 4.7 shows that if M is a non-conjugation SPM of [e, w]ι, M(e) = si
for some 2 ≤ i ≤ n − 2, and either M(si+1) = si si+1 and M(si−1) = si−1si or else
M(si+1) = si+1si and M(si−1) = si si−1. Replacing w with w−1 if necessary, we
may assume the former situation is at hand. It follows that si+1si si−1 
≤ w. Hence,
Lemma 3.3 implies that every element in [e, w]ι has a permutation diagram of the
form illustrated in Fig. 3.

For any u ∈ [e, w]ι, its diagram either contains two dots in each of A and A′, and
B is empty, or else B contains two dots and both A and A′ are empty. Say u is of type
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Fig. 3 Illustration for the proof
of Proposition 4.8. Permutation
diagrams of elements in [e, w]ι
have the depicted form. Shaded
regions are empty. Region C has
i − 1 columns and i + 1 rows,
and it contains i − 1 dots

B

A’

AC

C’

4 in the former case and type 2 in the latter; i.e. the type indicates the total number of
dots in A ∪ A′ ∪ B.

Recall the description of � from Fig. 1. Let us say that a covering of the form
depicted in the lower left picture is produced by a box cover transformation which
involves the dots which are indicated in the picture, i.e. those not shared by the two
diagrams.
Claim If u is of type 4, M(u) is obtained from u by a box cover transformation which
involves the four dots in A ∪ A′, whereas M(u) = u if u is of type 2.

The claim is readily verified if ρ(u) ≤ 1. In order to prove it in general, we assume
ρ(u) ≥ 2 and induct on ρ(u).

Suppose first that u is of type 2. Recalling from Fig. 1 the description of the cover
relation in ι, it is clear that v � u implies v is of type 2 or of type 4 with the dots in A′
forming a fall. The induction assumption shows that M(v) = v (in the former case)
or M(v) � v (in the latter). By Lemma 4.4, M(u) = u as desired.

Now assume u is of type 4. Let b denote the operator which acts on elements of
type 4 by applying a box cover transformation involving the dots in A and A′. The
induction assumption implies b(v) = M(v) for all u 
= v ∈ [e, u]ι since all such v

are of type 4 by Theorem 2.4. It must be shown that b(u) = M(u). If b(u) < u or
M(u) < u we are done by induction, so suppose b(u) > u and M(u) ≥ u. In order
to obtain a contradiction, assume M(u) 
= b(u). It suffices to find x � M(u), x 
= u,
such that b(x) > x ; since M is an SPM it would satisfy M(x) � x (if M(u) � u) or
M(x) ≤ x � u (if M(u) = u), so that the induction assumption implies b(x) = M(x)
which is the needed contradiction.

Consider the diagram of M(u) as depicted in Fig. 3. If b(M(u)) < M(u), x =
b(M(u)) has the desired properties. Hence, we may assume the dots in A form a rise,
as do those in A′. By Proposition 4.2, M(u) ≥ si = M(e). This implies si−1 ≤ M(u)

or si+1 ≤ M(u), since otherwise si would be a descent of M(u) corresponding to a
fall in A.

First, if si−1 ≤ M(u), the dots in A′ are not in the two leftmost columns by
Theorem 2.4. Therefore, there exists k ∈ [i] such that θ(sk) ∈ DR(M(u)), and this
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descent involves exactly one dot in A′ (by which we mean M(u)(2n−k) > 2n+1− i
and M(u)(2n+1− k) ≤ 2n+1− i). It is clear that b(M(u)∗ θ(sk)) > M(u)∗ θ(sk).

Second, if si+1 ≤ M(u), the dots in A are not in the two leftmost columns. Then,
s j ∈ DR(M(u)) for some i ≤ j ≤ 2n − i − 2 with this descent involving exactly one
dot in A (i.e. M(u)( j) > i + 1 and M(u)( j + 1) ≤ i + 1), implying b(M(u) ∗ s j ) >

M(u) ∗ s j .
Now, if both si−1 ≤ M(u) and si+1 ≤ M(u), we note M(u) ∗ θ(sk) 
= M(u) ∗ s j

e.g. since the latter element coincides with M(u) on [i − 1] whereas the former does
not. Thus, at least one of them is not equal to u; let x be this element.

Finally, let us consider the case si+1 ≤ M(u), si−1 
≤ M(u) (the situation si+1 
≤
M(u), si−1 ≤ M(u) being completely analogous). Let x = M(u) ∗ s j . If M(u) = u,
x 
= u and we are done. If u < M(u), M restricts to an SPM of [e, M(u)]ι by
Proposition 4.2. Since si−1 
≤ M(u), Lemma 4.7 implies that the restriction is a
conjugation SPM. Examining M(e) and M(si+1), we conclude M(v) = v ∗ θ(si ) for
all v ∈ [e, M(u)]ι. Hence, u = M(u) ∗ θ(si ) 
= x . The claim is established.

Now, Theorem 2.4 implies that w is of type 2 whenever u is of type 2 for some
u ≤ w. Since M(w) 
= w it follows from the claim that every element in [e, w]ι must
in fact be of type 4. In particular, M coincides with b which has no fixed point.

Just as in the proof of the claim, the fact that si−1 ≤ w implies θ(sk) ∈ DR(w) for
some k ∈ [i] with w ∗ θ(sk) 
= b(w). Moreover, for u ∈ [e, w]ι, u ∗ θ(sk) = u would
imply u is of type 2 which we have just seen is impossible. Finally, it is not hard to
see that b(u) ∗ s = b(u ∗ s) for any s ∈ S. In particular, s = θ(sk) has all the asserted
properties. ��

5 KLV polynomials

Finally, we have gathered all ingredients that are necessary in order to prove the main
result which asserts that any SPM of [e, w]ι can be used in the recurrence relation
for the Q-polynomials of the intervals [u, w]ι. With the key SPM properties from the
previous section under the belt, the arguments that remain are essentially identical to
those employed by Brenti in his proof of [3, Theorem 5.2].

Theorem 5.1 Let M be an SPM of [e, w]ι. Then, for any u ∈ [e, w]ι,

Qu,w(q) =

⎧⎪⎨
⎪⎩
QM(u),M(w)(q) if M(u) � u,

qQM(u),M(w)(q) + (q − 1)Qu,M(w)(q) if M(u) � u,

qQu,M(w)(q) if M(u) = u.

Proof This is just Proposition 2.8 if M is a conjugation SPM, so suppose it is not;
in particular ρ(w) ≥ 3 by Lemma 4.7. We induct on ρ(w). By Proposition 4.8,
there exists s ∈ DR(w), M(w) 
= w ∗ s, such that the conjugation SPM given by s
commutes with M and fixes no element in [e, w]ι. Let u ∈ [e, w]ι. Proposition 4.8
shows M(u) 
= u, so we consider two cases:
Case 1 M(u) � u. We need to show that Qu,w(q) = QM(u),M(w)(q).
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Suppose first that s ∈ DR(u). Then, either s ∈ DR(M(u)) or M(u) = u ∗ s. If
s ∈ DR(M(u)), M(u ∗ s) = M(u) ∗ s � u ∗ s. Therefore,

Qu,w(q) = Qu∗s,w∗s(q) = QM(u∗s),M(w∗s)(q)

= QM(u)∗s,M(w)∗s(q) = QM(u),M(w)(q),

where the second equality (as is the case in all subsequent computations of this kind
throughout the proof) follows from the inductive hypothesis and the fact, provided by
Proposition 4.2, that M is an SPM of [e, w ∗ s]ι. If M(u) = u ∗ s, then

Qu,w(q) = Qu∗s,w∗s(q)

= qQM(u∗s),M(w∗s)(q) + (q − 1)Qu∗s,M(w∗s)(q)

= qQM(u)∗s,M(w)∗s(q) + (q − 1)QM(u),M(w)∗s(q)

= QM(u),M(w)(q).

Suppose now that s /∈ DR(u). Since twisted conjugation by s does not fix any element
in [e, w]ι, M(u)�u �u ∗ s. We also have M(u)� M(u)∗ s = M(u ∗ s)�u ∗ s because
ρ(u ∗ s) = ρ(M(u)) + 2. Therefore,

Qu,w(q) = qQu∗s,w∗s(q) + (q − 1)Qu,w∗s(q)

= qQM(u∗s),M(w∗s)(q) + (q − 1)QM(u),M(w∗s)(q)

= qQM(u)∗s,M(w)∗s(q) + (q − 1)QM(u),M(w)∗s(q)

= QM(u),M(w)(q).

Case 2 M(u) � u. We must prove that Qu,w(q) = qQM(u),M(w)(q) + (q − 1)
Qu,M(w)(q).

First, assume that s ∈ DR(u). Then we have u ∗ s � u � M(u), and therefore also
u ∗ s � M(u ∗ s) = M(u) ∗ s � M(u). Hence,

Qu,w(q) = Qu∗s,w∗s(q)

= qQM(u∗s),M(w∗s)(q) + (q − 1)Qu∗s,M(w∗s)(q)

= qQM(u)∗s,M(w)∗s(q) + (q − 1)Qu∗s,M(w)∗s(q)

= qQM(u),M(w)(q) + (q − 1)Qu,M(w)(q).

Suppose now that s /∈ DR(u). Again, this means u � u ∗ s. If M(u) 
= u ∗ s, then
u � M(u) � M(u) ∗ s = M(u ∗ s). Hence, u ∗ s � M(u ∗ s). We obtain

Qu,w(q) = qQu∗s,w∗s(q) + (q − 1)Qu,w∗s(q)

= q(qQM(u∗s),M(w∗s)(q) + (q − 1)Qu∗s,M(w∗s)(q))

+(q − 1)(qQM(u),M(w∗s)(q) + (q − 1)Qu,M(w∗s)(q))

= q(qQM(u)∗s,M(w)∗s(q) + (q − 1)QM(u),M(w)∗s(q))

+(q − 1)(qQu∗s,M(w)∗s(q) + (q − 1)Qu,M(w)∗s(q))
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= qQM(u),M(w)(q) + (q − 1)Qu,M(w)(q).

Finally, if M(u) = u ∗ s, then,

Qu,w(q) = qQu∗s,w∗s(q) + (q − 1)Qu,w∗s(q)

= qQM(u∗s),M(w∗s)(q) + (q − 1)(qQM(u),M(w∗s)(q)

+(q − 1)Qu,M(w∗s)(q))

= qQM(u)∗s,M(w)∗s(q) + (q − 1)(qQu∗s,M(w)∗s(q)

+(q − 1)Qu,M(w)∗s(q))

= qQM(u),M(w)(q) + (q − 1)Qu,M(w)(q). ��
Since Qu,w is determined by the SPMs of the intervals [e, v]ι for v ∈ [e, w]ι, this

also holds for the KLV R-polynomials and the KLV polynomials themselves. Since
an SPM is a poset invariant, the next corollary follows.

Corollary 5.2 If f : [e, w]ι → [e, w′]ι is a poset isomorphism, then for all v ∈
[e, w]ι, Qv,w = Q f (v),w′ , Rv,w = R f (v),w′ and P ι

v,w = P ι
f (v),w′ .

In particular, Theorem 1.2 is established.
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