JERSEY, SURE!
SPECIAL DEVELOPED JERSEY KNITS
WITH COLOR EFFECTS

FINE ARTS
FASHION DESIGN
2017.3.02

CAROLINE MOËLL
BACHELOR DEGREE 2017

THE SWEDISH SCHOOL
OF TEXTILES
UNIVERSITY OF BORÅS
Line-Up
Abstract

This study investigates the effect of single jersey, based on its original form as a cylinder. It is also an investigation of color and transforming surface of garment.

The outfits are based on the cylinder in construction. With some cuts and seams, developed into garments.

The surface of the fabric has qualities recognizable to rib, but the construction is different. By using cotton and polyester yarns, the stripes shrinks in different directions and when the body integrates with the fabric, shape, gravity and movement will make the material transform by open and closing the lines.

Different color effects are presented in the collection. The result is suggesting different color effects, depending on size of the stripes, the saturation of the colors and the placement on the body.
"All colors are the friends of their neighbors and the lovers of their opposites"
- Marc Chagall

Table of Contents

1.1 INTRODUCTION TO THE FIELD

1.2 MOTIVE

1.2 A Motive - Fabric

1.2 B Motive - Color

1.2 C Motive - Shape

1.3 AIM

2.1 METHOD

2.2 PROCESS AND DEVELOPMENT

2.2 A Color

2.2 B Jersey

2.2 C Shape

2.2 D Apply

3.1 RESULTS & CONCLUSIONS

3.2 DISCUSSION

4.1 SOURCES: LITERATURE

4.2 SOURCES: PICTURES & WEB

5.0 APPENDIX

Stockholm- & London Fashion week and external publications

5.1 PHOTOSHOOT

5.2 THANK YOU
'Jersey, Sure!' began as an interest in color and textile techniques. During one year of internship and temporary post at H&M, and ten weeks internship at Fashion Trade, I noticed that color is often applied in the final state of the process, and textile techniques were often inspired from others work and not always experienced.

This project is presenting an alternative aspects of using colors and textile as the main focus. As Karin Landahl (2016) explains in The myth of the silhouette, on form thinking in knitwear, "A fashion design process often starts by stating to which garment type the result is to belong. Thus, the garment type is already influencing thought processes at the beginning of the creative process".

This project will start with color, then material, continuing into merging these two. When that state of the process is ready, I will continue with developments of shape. I will keep the tube as a guide-line and with one, two or more cuts develop the fabric for the body to interaction. This method makes it possible to reduce the pattern construction and to continuously work in three dimensional. This is important since many clothes of today are developed for a static body, which are a product of the static way of designing clothes (sketching, drawing in computer, draping on a torso mannequin), R. Lindqvist (2013) On the logic of pattern cutting.

A big part of following development is about exploring existing techniques and develop them further into the aim of making color changes, interaction of colors or transforming surfaces.

Jersey could contemptuous be perceived as an expressionless material regarding its construction and surface. This perception created the name of this project, 'Jersey, Sure!' This study investigates one special made surface effect in single jersey and is developing the technique further, in combination with color effects.

The silhouettes are based on the original form of jersey fabric, created by the machine as a cylinder. 'i.dress' by Ina Hjelte (2012) is exploring construction from two-dimensional to three-dimensional, by going directly from fabric to garment. Instead of using pattern construction, flat fabrics were cut to make the fabric able for the body to interact. I will use this way of constructing garments in this project, but with the starting point in the tube of jersey. By using this technique, the silhouettes become simple shapes and are letting the material and color effects be the main focus of expression.

The following pages (Motive) will go deeper into the background of color, fabric and construction which is the guide-lines of this project. Recurrent reference is Issey Miyake and his team, since they are one of the leading fashion houses of technical development of today within this field.
According to the book *Rundstricken* (Iyer, Mammel and Schäch, 1991) the first knitting machine was produced in 1589 by William Lee, and was driven by man. Back in history, there have been woven materials, sewn to provide a tube and by adding pins make the fabric into a garment. This garment was called peplos (see picture 3).

In 1798, Monsieur Decroix had the first circular knitting machine ready for use. He realized that the performance could be optimized by replacing linear movements to circular. But this technique was not optimized until 1850, when the needle tongue was invented. The needles go back and forward, and therefore the machine could work more time-efficiently. With these machines, the material was manufactured as a jersey tub, for the manufacture of stockings. Later, the technology developed into a larger diameter for the circular tubes.

Today, we separate the knitted garments in two categories, heavy knit and jersey, depending on the size of the loops in the construction.

Heavy knits are mostly made by hand, with two sticks creating loops with a thicker yarn. When knitted by hand, it is most common (unlike woven and jersey) to create the garment directly with sleeves, neckline and hemline (Karin Landahl, 2016). Most woven and jersey garments are made by cutting pieces from the material and then sew them together to make a garment.

Jersey is a knitted construction of fabric with smaller loops. Because of its construction, it becomes a stretchy, thin fabric usually made for underwear, T-shirts etc. The jersey knitting machine has the needle bed in a circle. The finally material is there for cylinder-shaped. The impact of this circular knitting, is that the wire rake is a bit diagonal (See Picture 1). Most common is that jersey is cut into pieces and sewn together to fit the body, but there has been developments within this area.

In Issey Miyake spring collection 2016, he presented a new collection called 'Baked Stretch.' “With conventional pleats, we use specialized machinery to create the pleats,” says Yoshiyuki Miyamae, head of women's wear. Miyake is weaving a fabric, prints the colors upon it, prints glue to every second wave, and bakes the material in an oven to create the pleat. The glue expands at high temperatures, forming the molds of the pleats. (See picture 4). The difference between 'Baked Stretch' (and 'Jersey, Sure') is that the shape of the pleat could be in any pattern you would prefer. For the technique in 'Jersey, Sure' the pleats will always be horizontal or vertical, straight lines. The difference is also the technique. They are using woven material and the weave must go through several steps of process to get the pleat surface, while mine is done while the material is in making, and with one simple wash compressed. If the material in 'Jersey, Sure' begins to lose its compression, the material just needs to get washed to regain its leverage. That may not be the case with Miyake's materials in 'Baked Stretch' or 'Flying Saucer' (picture 2).

Women’s "Flying Saucer” Dress from 1994 is another work by Issey Miyake. In this case, a tube is pleated in both horizontal and vertical direction, added with strong colors. The difference to 'Jersey, Sure' is that these fabrics are woven and pleated by heat, and the ingoing and outgoing colors are not different as in 'Jersey, Sure' (Picture 2).
Motive

Color

Josef Albers’ ‘Homage to the square’ with flat rectangle interacting with the closest colors has been an inspiration to the color aspect of this thesis. There is a gap in making colors interact within clothing. Many times, the colors are used as blocks, as in ‘Homage to the square’. Evelin Kägo (2016, ‘Color Perception’) has intensive colors in stripes, layers and blocks that have worked with colors, but not color mixing or transforming surfaces because of wearing (picture 1).

The Lumiére brothers (movie makers) and Loie Fuller’s (performance artist) work ‘September Dance’ is a piece of work showing color-fades in garment. First, they made a movie with Loie dancing with big pieces of fabrics. Then they added colors into the movie, directly on the camera’s negative, since it was not possible to make color movie at that time (1921). The result became a movie with a dance making beautiful shapes with big pieces of fabrics, where the colors were constantly changing (Picture 2). This method was only possible because of the technical negative and could not be made in real life. This will be resurged in this thesis.

In Marjan Kooroshnia’s book Creating Diverse Color-Changing effects on Textiles (2015, page.16, M). Kooroshnia sets the point of where color-transformation in textile can suggest new forms of communication and expression. Prototypes were created to challenge user perceptions about the static dynamic relationships in fashion of today. In M. Kooroshnia’s work, the effect of color changing is decorative, and the effect is made because of heat. The surface is responding even if the fabric was laid flat. M. Kooroshnia is demonstrating the interaction between textile and human with help of print and heat.

Issey Miyake’s collection fall 2017 is based on pleats in two colors to provide mohare effect. The colors blend in some cases, but the silhouettes are created with archetypical garments in mind and the base shape of the material is not present in the result of silhouettes, as it is in ‘Jersey, Sure’. Miyake's work is presenting two colors per outfit, when ‘Jersey, Sure’ provides up to four colors in the same outfit, to demonstrate the given theoretical color experiments.

2. Loie Fuller, September Dance or Lily Dance, Performance, 1921
3. Issey Miyake, Fall 2017, Ready-to-wear. Pleated fabrics in two colors, applied as garments.
Design methodology of today is two dimensional (Mönster och konstruktioner för damkläder, 1985) according to Richard Lindquist ‘On the logic of pattern cutting’ from 2013. The construction method that we use in the western world (Scandinavia, Europe, America) is based on flat pattern construction.

Tubes to dress the body were used in Issey Miyake’s fall collection 2010. “…Inspired by the revolutionary mathematician William Thurston’s geometric models for the shape of the universe…” continuing “After the show, Fujiwara and Thurston wrapped themselves for the press in a long stretch of red tubing to make the point that something that looks random is actually (according to Thurston) beautiful geometry.” This was written by Tom Blanks, VOGUE in Paris 2010. Fujiwara and Thurston used smaller jersey-tubes to wrap around the body, where I am interacting the body through the cavity that the tube provides. Like Miyake’s work, ‘Jersey, Sure’ will start in a process with mathematical formulas to create shape, the Golden Ratio.

In 1997-1999, fashion designer Issey Miyake collaborated with Dal Fujiwara to create a new jacquard machine that links the thread into clothes when the fabric is in making. Thereby, no sewing is necessary. The line was called A-POC (A piece of cloth). Just cut the lines, and the garment could be created (as in picture 3) into several different tops. In one example to demonstrate the fabric, Miyake selected 23 models to wear one piece of dress together (picture 4), as the fabric was made before cutting the fabric into separated clothes. He sold it simply as a long tube of jersey, and it was then up to the customer to cut and shape it.

The difference to my work, is that I used a machine already existing and optimized it in the way that it was already used, when A-POC created a new machine. In this case, it is the quality of the yarn that makes the effect, and the garment is still a tube even though it is adapted to the body. A-POC is working with archetypical garments.

In Ina Hjelte's degree work from 2012, ‘i.dress’, she explains that a part of her process is “Working from two-dimensional to three-dimensional by the help of the body, going directly from fabric to garment”, instead of using pattern construction. Ina is inspired by historical construction (flat square of weave), and adding updated references for garments into a new way of constructing garments. The difference of her way of constructing and mine, is the origin shape of the material (flat woven square versus knitted tube).

‘Jersey, Sure!’ aims to fill the gap between flat pattern construction, by constructing from full tube and enter the body inside to interact with the fabric.
The aim of this work is to use jersey fabric with specially developed surface, use the shape of tubular to create shapes with color effects.
Method

This project is based on my curiosity in color methodology and textile techniques in relation to clothes. The starting point was to get color transformation to occur in the garments.

The development of the fabric started in the making of flat knitting, purl and knit stitches in a links-links construction to get a rib effect, developed further into several industrial knitting machines. The fabric I found best suited for this project was the striped knit made on the circular knit, also called jersey. In this test, one stripe was polyester and the other cotton, to get a rib effect. The knowledge of how this effect could emerge were inadequate. By trial and error, I found out which cotton and polyester yarns (in combination) worked to create the desired effects.

The process of development started with the objective to explore a technique that could blend red and blue into purple. When the material was decided, different color combinations based on Albers’ and Goethe’s color theories were applied. The selection of colors was restricted to the available yarns, only including the ones in accurate quality. As the colored tubes was ready in the machine, the tubes were developed into garments by a minimum of selected cuts, enabling a body to enter and interact with the tube.

I explored and developed several textile techniques to enabled color transformation. I tried woven (waffle weave), knitted (gentle and straight stitches, piqué and stripes of different quality), tufted and fused fabrics. As Karin Landahl (The myth of silhouette) I used existing machines and techniques to develop a new way of thinking regarding the silhouette of knits, in this case jersey.

By using Josef Albers’ Color theory and Goethe’s Color Theory, together with ‘Färglärans grunder’, I used the pedagogic examples of color effects. One example is when two colors look like the same because of its surrounding colors. To do this, several combinations were used and tested in the machine.

To select different color effects, several techniques have been used. One development step was to use Photoshop to visualize a new result. When one fabric was ready and the effect was reached, I constructed the tube to fit the body. The clothes were photographed and adjusted in Photoshop into different combinations of color to provide the same effect, or a new. When I found a combination that was inspiring and seemed to work well for the given purpose, I went to the knitting lab and started to develop new fabric in that color combination. By trial and error, some of the color combination was found working out well, in relation to the tasks from Albers’ color theory.

The colors’ characteristics in relation to each other is more important than the definition of the color, for example red. One example is the yellow and blue dress, where a light green color appears in movement. When making accessories in that lime-green color, people around me called it “the yellow accessories”, but they were still confident that the yellow and blue blends into a third color, a greenish shade. The effect of blending and the present third color is therefore more important than the definition of the color that the blending provides.
Color is one of three core subjects in this project. In ordinary design processes, color is often applied to the garment in the final stage. My entrance into this project was to let the color take a significant role in the design of the garment. The color was important in how the material choices were developed, and the material gave the recipe for how the shape of the garment would be developed. Color blending has played a major part in the project, as a guide. When a material was able to mix two colors (when it was moving), the material was considered successful. In this chapter, there are several inspirational elements taken into count. With others’ ideas as inspiration, I adapted thire workways with the intention to fulfill my aim for this project.
Experiments based on the book 'Color, play and experiment' by Ann Forslind (2005) were partly the basic moments of mixing the basic colors blue, yellow and red. The colors that occur are secondary colors: green, violet and orange (page 7). Pointism was also sought after by the technicians tufting, yarn balls and piqué. Ann Forslind explains what is happening when a color takes over the expression of the other, "Much of what happens between colors is about contrasts. Colors that are opposites to each other are contrasts. Black and white are the strongest. The primary colors are strong contrasts to each other, and the complementary colors. Bright and dark colors can also be contrasts".

In the book 'color lessons' (Gundersen A, Kjernsmo D and Reinhardtsen B, page 26) simultaneous contrast is described. This phenomenon causes surrounding colors to change the perception of a color that faces them both. “For example, a brown color may be perceived as strong red against a green background, while the same brown color is perceived dirty against a red background”.

Another way to make an illusion in color, is by taking two different colors and make them perceived as the same, because of the surrounding colors. This is discussed in Albers’ Color Theory regarding color interaction in Josef Albers work. “We have considered that color differences are caused by two factors: color tone and brightness, and mostly both at the same time. Once you realize this, you can use the contrast effect to “deprive” the brightness and/or color tones of their original appearance and give them opposite properties” (Page 30-31, Albers Color Theory). This experiment is directly translated to one of the outfits in this collection, and later on in this report, this will be explained further (see picture 3).

‘Albers Färglära’ (Albers Color Theory, 1982) about color interaction, provides a clear picture of how finished colors are best applied when working with colors to produce interaction. By using colored paper, or in this case yarn, different combinations and variants may occur in different constellations with a more accurate picture than what paint mixed in different shades can reproduce (page 19).
Process

Color blending by extension

This experiment was based on the movie "The September Dance" with Loui Fuller by the Lumiére brothers, 1899. By using extensions of body (such as sticks) I created volume of the fabric through the movement of the human body. There were used big fabrics in two different colors, in order to blend.

I used a red and blue fabric, attached it to sticks, and I was dressed in black to not add any more colors. I placed a white background and filmed and photographed as I was moving the sticks around and in front of my body. When moving and filming this act, the movement of the fabric became beautiful shapes, but the colors did not blend (see process below).

By adding the effect of the camera’s slow shutter, the color blending appeared. I also developed this test by adding yellow to the combination of fabric. The color blending became even more abstract and I made the conclusion that two colors are better blending into a third color, than three colors blending into a fourth. See picture below.
Process
Colorblending Through Print

When watching Lucy and Jorge Orta's movie, 2009 (picture 1) where folk dance from Baltic countries was being filmed, wearing a printed skirt, the colors are blending. This made me want to try this my own.

I made my own flower printed skirt (picture 2) and made some dance moves. With the knowledge of slow shutter on camera, I captured the movement where the color of the print blend (picture 3). Still this couldn't be caught by the eye since a photograph was needed to demonstrate the effect.

By using Photoshop, I cut out the shapes of the moving skirt, and made it into an all over print. Though the flower print did not fit the overall visual expression of this project, color, and a more abstract print was needed. Therefore I made new shapes with squared fabrics where I also captured the movement and made an all over print. This new print with captured movements of color blending were digitally printed to a woven satin cotton.

The expression became flat and I found no inspiration for further silhouette expression within this method. I wanted a 'living' surface that was perceiving color effects by wearing, not a picture of the blending.

By this knowledge, I continued to explore surfaces of different fabrics.
Process
Weaving squares

By trying different techniques, such as fusing, knit, weave and print, I made the conclusion that the woven techniques had the best possibilities.

Pictures below demonstrate the pattern in the computer for making a satin weave. Since the warp is black in this machine, the colors to add were preferably dark but still colorful, since the warp is showed in this type of construction. In the end, both sides of colors were picked in cotton, so that the fabric would preferably shrink a bit when washing, to get a thickness to the fabric.

By making a square pattern, the yarns could swish from one side to another, so if one side is red, the opposite of the same square is blue. The result did not end up as clear as I expected and even when the fabric was washed, the warp was still visible.

Process
Tufting

By using tufting I aimed to achieve the effect of pointism. By distance from the material, the colors blend. Below presents four different color-tests based on the ground colors (red, blue, yellow). Pic. 1 is blue and yellow demonstrated, aimed to appear green. The result is yellow and blue dots, and the overall appearance is unfortunate not a green surface. Pic. 3, the red and blue is actually appearing as purple when getting distance from it. This is the best result for these four tests. Perhaps the yellow color and the red/blue is too far away and the lightness of the colors are making the optical blending harder to predict (discussed in Albers’ Color Theory, page 23-27). Since the tufted material is really heavy (because of all yarns), expensive, time consuming and the ready fabric is really stiff, not suited for clothes, this technique was not developed further. Still, the accessories are based on this technique.
Process

Piké

A flat knitted material with pointism quality is this piké structure. The machine is a round knitting machine, and it is possible to add up to four yarns at the same time, and therefore four different colors.

By adding two different yarns in different colors, a color blending effect is created. When adding two yarns in the same color and one yarn in a third, the first color becomes more present than the third.

Picture 4 is presenting lime green and wine red, turquoise and wine red and below two turquoise with one wine red yarn. When bending and draping the material, the color shifts in the fabric, and when viewed from distance the colors blend.

Since the fabric is thick, heavy and flat in its expression, the development of this material was put to the side, to develop other qualities further.

Pique jersey and waffle weave provide pointism effect within textiles.

Process

Waffle weave

Waffle weave is a technique where a three-dimensional surface appears. It becomes the shape of a waffle, or a negative pyramid. Two of the walls in one pyramid is the weft and two is the warp. Because of that, two sides can not be changed in color (with the reservation that this is possible, but take days to complete). Two walls could be in different colors by making a striped report in combination with the waffle report. (See picture 5)

This was made both in the hand weaving machine, and at the computer controlled industrial weaving machine, that makes the samples more extensive in size. In the industrial machine, I programmed the pattern report and the digital version was translated into a hole card that was placed in the machine. A card was required for the little waffle, one for the stripe to get different color on the sides and the corresponding even for the big waffle weave (picture 6). A pair of trousers were made (picture 7), to see if the material worked both close to body and with volume.

The construction makes the colors appear like pixels, as a picture in the computer or in a magazine. Bending of this fabric makes you see three colors from front, and two colors from the side. This makes the color effect appear where the leg is red from left side and blue from right side. The lower part of the leg has a draping, and when the model walks the colors blends into a lavender/purple color.

The threads are long in between the links and easy to get stuck in, so that the threads brakes. Then the fabric will be repaired and the shape of the waffles will fall. By the knowledge of several presentations with the garments on model coming up during this project and the fashion shows in the end of examination process, this garment and technique was not selected.
This was the first exploring of a textile that was working for my aim to change color when moving, harder to brake then some other tests from before, and with two sides in different colors.

This is made on a flat knit machine, and the fabric comes out as a square (see pic.). To do this, I used the technique of purl and knit stitches, where (in example to the left) the blue has knit stitches and the red purl stitches. As you can see in the process picture, the fabric is getting the “accordion-effect” already in the machine. It shrinks and extends when relaxed or tension is added.

For this fabric, I made some tests to get the right density and elasticity of the material. The material shrinks even more when washing.

The technique took time, both to make report in computer and for the machine to create the material. I found out that this technique could be made more time-consuming on the circular knitting machine.
Process
Jersey knit

This is the process of making a fabric in jersey that has a surface which is changing when moving, a development from the previous pages.

To do this, I added one cotton yarn (blue or beige in process pictures) and one polyester yarn (red). When the fabric is in the making, nothing happens, it is just striped with no structure. When washing the fabric, the polyester shrinks and the cotton stays. This makes the effect of one side in red and one side in blue (or beige). This material has a “accordion-effect”, which becomes stretched in order of the gravity, movement and bending over another shape (ex. shoulder).

I made as small stripes as possible, and as big as possible to see where the contractive effect is still working, and when it falls apart and just becomes two stripes. I also tried different mixes of stripes, ex. 6 polyester x 18 cotton. This did not end up in the effect that I wanted since the wider stripe does not compress enough and the movement effect is not present. The best effect is when the polyester stripe and the cotton stripe is equal in size.

Something that I discovered later on, when selecting sewing thread, there is often best to choose the color in between the two presented, ex. purple over-lock threads for the blue and red fabric.
Process

Color

As viewed in the pictures, three fabrics were developed for color-blending. Two of them were based on the ground colors (yellow, blue and red) and the third is a combination of secondary colors (orange and purple). See picture (4) for ground colors within the black lines and secondary colors outside of the black line, demonstrated from how they become out of ground colors combination.

First picture (1) makes purple apply from red and blue lines. The line colors are equal in matter of lightness, blacks and saturation. Second (2) provides light green from a combination of yellow and light blue. Yellow appears to be lighter than other colors with the same saturation, therefore a light blue was added to match the appearance of the yellow, and blend easier.

Last picture (3) are based on secondary colors, to see if those could blend, and it does. The light purple and the strong orange is different in appearance, but still blends into a light red, or pink if you wish.

Experiment 2 and 3 are developed further into garments in the final line-up, see picture 5 and 6. The full tube are still present in these outfits, to provide the color blending effect with the help of the volume of the fabric. Outfit 5 has small lines, when 6 has wider lines. Only one cut is made the tube fit the body.
Process
Color

Fabric with different vibrancy and contrast makes the strong color takes over the calm and soft color. This is one example for that.

This orange luminous color and lavender in combination is contrasting both in color, lightness and brightness. The orange takes over and 'yells', when the lavender is calm and soft in its appearance.

When (watched from the lavender side) the fabric stretches or bends, the orange appears more and takes over the expression of the fabric. See picture 1 and 6, photographed from different sides, 1 from lavender side and 6 from orange side, but the appearance is stronger in 1 and 2.

Picture 3, 4 and 5 shows the changing in the fabric by bending, i.e. when the fabric takes shape around the body. From the parts where the fabric hangs, the lines open up a bit and the orange take over. It is not that much opening up for the fabric needed to make the transformation of color in this fabric, for this color combination.

These pictures demonstrates how one colors takes over the apperence from the other when shown. By bending the fabric, the lines open up and the underlaying lines are visible.
Process
Color

This example shows how two colors could be perceived as one because of its surrounding colors. The close-up picture shows the turquoise with the lilac, and the yellow with the blue.

When the garment is turned inside out (picture 1), the colors is perceived as different, but when the garment turns right (picture 4), the underlaying colors is perceived as the same since the added colors of yellow and purple are reducing their difference. Picture 2 is demonstrating the same principle as this outfit, but with other colors.

This test was the hardest to archive and took many different tests to make possible, since the effect can not be seen until the material is removed from the machine, and the right amount has to be added to see if the effect is possible in full scale.

The silhouette is made so that one color combination is the body, the other as sleeves. By making the sleeves long and in full tube, the inside of the sleeve combination is visible and by the weight, the material opens up over shoulder part. Thereby, the colors perceived as the same, but are not, are as visible in the outfit but still separated to not interact with each other more than in the chosen combination (picture 3).

When moving, the material opens up and show even more of the combinations, still perceived as the same color even though they are not.

This dress is a full-scale tube and two cuts are made to make it possible to wearer as a garment. Inside, there is a dress added for finish, in yellow and blue to separate the mid part from the sleeve color combination.
Another test of how colors could break through, became this outfit. By adding the light colors underneath, the parts where the fabric contracts become clearer in just that color. See picture 3, where all convex curves of body bend the fabric to open up the lines, when concave shapes of body contract the material and armholes and waist is in purple. This is clearer than if the underlaying color would be dark, trying to cover with the lighter colors.

This is possible thanks to the fit of the dress. The silhouette is one full tube, cut in one end, and one cut is made for head to go through, see illustration 1. This opens up for the lines to become vertical in dress, even when full tube is used.

It is a close to body variation of when one color could change in appearance because of, in this case, it’s underlaying neighbors. The yellow is a contrast to purple, both in color and lightness. Second color is a pink that is quite close to purple color wise, but has a contrast in light to the purple. The pink is in between the purple and yellow color wise, and builds a bridge between these two, which makes the dress perceived as colored in harmonic color combinations.

Process

Color

1. Tube comes out from the machine in this direction

2. One color change in appearance because of it's surroundings

3. 1.
Process

Color

In this test (1), there is one color perceived as two because of its surrounding colors. One color surrounding is green, the other blue. The pink color is changing in appearance. The illusion of the pink is that it is a dusty, lighter pink color with the green, and a strong, bright color with the blue.

This fabric was not used, because of the yarn combinations that did not work as desired.

I developed this color effect further, in lack of pink yarn with the right effect. I found a blue-green yarn working out to give the effect and combined it with one yellow and one blue combination (3). The result is one of the outfits in half tubes diagonal on body. Here, the color combinations are more present if they meet more often in the outfit, therefore the cross over silhouette was made in this combination. The blue-green yarn is the same as the sleeve combination (with purple) in previous silhouette, and makes the collection more combined.

The blue half tube could also be presented separated as a demonstration of how the material is still relevant even though the colors are quite close to each other color wise. This provides graduation within the line-up. When presented only blue tube, it can be in conjunction with the purple and blue combination in the full tube dress outfit demonstrated together with the combinations in this outfit in picture 2. (For full tube dress, see page 21).

One color could change in appearance because of its surroundings. Two different examples, one for pink and one for blue.
In this test, the colors are fading or continuing in new constellations. First, there is a combo with bright yellow and lime green. This lime green yarn is usually perceived as bright, but in this constellation, it is perceived as dusty.

Secondary, there is the same bright yellow with another yellow, also perceived as bright and light in ordinary situations. Here, it perceives as a red yellow.

Last, the “red-yellow” is combine with its contrast color, purple. This is the only part of this dress that has bounce.

Since the silhouette of this outfit is forced into a given shape and the yellow-yellow parts are not working regarding compression, this outfit is removed from the line-up.
Process

Color

Since previous test with purple and contrasting color orange is used in this line-up, I used the purple in other ways to see if the appearance could change depending on combination. In last combination, purple got in the background to enhance the effects of the orange color. Here I wanted the purple color to take over and get perceived as the main color. After making some examples, I found out that neutral grey makes the purple stand out and perceived as the color it actually is, more than purple in combination with black or white. See demonstration in picture 7 and 8.

When making the stripes wider, the color takes even more place, and when putting it on top of the grey, the grey color frames the purple. The color effect gave rise to a broader line in the material that gave new possibilities in the development of the garments.

By making a straight square (picture 1) adapted for body to enter (picture 2), the expansion of the material is demonstrated (picture 3). The lines in the lower part of the dress is compact, while the upper body range out the material over the shoulder part and grey appears.

Trousers were also made with this material. From a full tube, one cut was made and the trousers were ready to use. See picture 4, 5, 6.

Tube comes out from the machine in this direction

Step 1 Cutting x 2

Step 2 Sewing

Neck

Sleeve

Red lines for sides sewn together

Demonstration

Step 3

Red lines for sides sewn together

Full tube trousers becomes shorter on the out-line of the leg, since this material has to bend over the hip, when the material between the legs are compact.

1. Cutting

2. Sewing

3. Demonstration

4. Tube comes out from the machine in this direction

5. Full tube trousers becomes shorter on the out-line of the leg, since this material has to bend over the hip, when the material between the legs are compact.

6. Demonstration

7. Purple as main color, grey to frame

8. Black takes over, purple as second color

25.
With color as a guide-line, jersey in stripes came out as the best material to developed further in this project. It had qualities to blend colors, to vary in size and color and were more time-efficient than many other ways of making materials with transforming surfaces. This chapter will present how the circular knitting machine works, its quality and inhibitory properties. I will explain to you how I developed different kinds of stripes, different combinations and maximized the machine's ability to make multicolored material variations.
Process
Fabric making

To get the desired shrinkage effect, the polyester has to be 242/64/1 and the cotton yarn 30/1 or thinner. This excludes a lot of yarns and the selection of color combinations are restricted through the effect that the yarn is able to get. If the yarns work to get the effect, you have to remove the material from the machine and wash it at 60 degrees with centrifugation of 1400. The yarn that I used was made from several filaments in a fluffy construction with lots of air in, space for the fibers to shrink. When more compact yarn constructions of polyester have been tried, the effect is inferior. Every stripe combination has a pattern that I am programming into the machine. The yarn has to have a S-spin, since the machine circulates from right to left, as the clock.

The limitations of this is that some yarns can’t be used to get this effect. To find out which yarns do work, I have tried and concurred. When a color combination is found, the yarns are put into the machine, make knots for every each, make a start row, then decide how much of which combination, count on how many rows that would be in a certain stripe size, program the machine and make it start. During the production, things happens constantly with the machine. Yarns gets broken, it gets stuck somewhere, the machine drops the fabric or a yarn can’t even be used for this machine because of its qualities. When the fabric is ready, the fabric is flat. The fabric gets removed from the machine and washed correctly to find out if the yarn works for the pleating effect of not.

When the fabrics is sewed together, the stripes are moving that much in uncontrolled ways that they often have to be sewn by hand first, then on the machine, to fit as nice finish. The machine used to make the materials into clothes is straight seam machine, hand sewing and four thread over-lock. For hemlines, two or three threads over-lock, to make a neigh edge.

When making these materials, there is several parts to take into concern. One is which colors to use. If a green and purple in combination is decided, there is a wide scale of hue and saturations in greens and purples to select from. Since the yarns that could be used to get the effect is limited, the selection shrinks. When the hue and saturation of the green and purple is selected, there is not so many yarns left to pick from. Therefore, the question must be “what effect am I looking for/expecting”? Than the selection can be made, and the green color that had a bright expression could also be a bright yellow, since the effect becomes the same since the brightness and contrast to the purple gives the effect, not always the specific defined color.

Cotton is the fabric that is relaxed and polyester is shrinking, this gives the effect or one stripe compressing in opposite direction. Both yarns have to have the right qualifications as well. The cotton yarn has to be thin. The yarns to select from in the knitting lab is 24/1 (relatively thick for circular knitting machine), 30/1 (most common) and 50/1 (very thin). For this effect, 30/1 or thinner is required.
Process
Fabric making

To make the stripes, there is need of a pattern of how wide the stripes will become. Have in mind that it is twelve knitting systems in the machine. Because of that, you need twelve cones of yarn for each line*. When making a pattern, you first need to decide how many colors should be in it, how many times they will be repeated and how wide each repetition will be.

How many times shall the machine switch to another color? If you got a two-colored stripe (example one) the switches are two. When you got a three-colored fabric (example two) where one color is recurrent between two others, there is four switches.

In example two, green is six rows. Green is the yarns placed in section A in the rack. Second color is blue, places in section B, twenty rows. Yellow is section C and two rows. Then B again, twenty rows. This is the hole combination. The picture shows how the combination becomes when reported two times, and this happens automatically since the machine starts over from 1 after 4.

Now the pattern is ready to use. Select how long you want your fabric by making this programming for a bit, cut a bit of the fabric from the machine. Calculate how many reports that must be. If you need 2 meters and one report gives you two centimeters, the will be 480 rows. Put the counter in 480, and the machine will stop when two meters is ready.

With 30/1, the yarn is thinner and the fabric shrinks better. By the shrinking effect, the bounce effect is more pronounced as the material shrink to completely cover the underlying color when the material is relaxed.

80 masquerades provide ca.4,5 cm stripe. With 30/1, the yarn is thinner and the fabric shrinks better. The lines curls when swishing from cotton to polyester and polyester to cotton. This makes the result stripes smaller, but the bounce effect is better since the fabric can both expend for the shrinkage as smaller stripes, and the up roiled fabric in every changeover is expending as well.

One kind of wide stripe provides a wave or a curl in the construction between the stripes which provides extra bounce effect.
Process
Fabric and stripes

The knitting machine is made for a maximum of four colors. Every color system has been given a letter, A-D. For this first experiment, I used two polyester yarns and two cotton yarns. To have four systems ready, there will be a need in twelve yarn cones in each color. The aim of this test was to make two different colors appear as the same color, regarding on what color surrounded it.

I started to investigate different ways to combine the colors and the effect that polyester and cotton is able to provide. One first step was to make a pattern where cotton and polyester was placed every second, as a report A, C, B, D. By doing so, there became a report of four different colors repeated in six rounds each, a total of 24 rounds and 4 shifts. Now both the beige were placed beside each other, as green and red beside each other.

Wider stripes was tested. Instead of six rounds as previous, every color was repeated 40 times. A total report of 160 rounds. A second variation was made, one where every stripe was 160 rounds, i.e. total 640 rounds for full report. Another combination was: beige, beige, beige, red, green, red (Picture 2 and 3). In this case, every second quality was polyester and cotton beside each other.

Another way where every other quality also was different, so that the effect could appear was by doing A, C, B, D, B, C, i.e. beige, green, red, beige, red, green. By doing this pattern, every beige was surrounded by one color that could give the effect.

This test did not suggested regarding color effect, since the effect was not visible from one side, and when moving the effect disappeared because of the interruption of the other color combinations.

Since the eligible color effect did not appear by this technique, these multi striped fabric were reduced from the collection. Still it was a deeper understanding of the fabric and the color effects that was possible. To develop desired color effect, blocks were made instead where two colors were striped and beside this block, another combination of two colors. When movement was made, the different underlaying colors appeared, but because of the surrounding color of that block, they appeared as the same for both blocks.

<table>
<thead>
<tr>
<th>Quality</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cotton Beige</td>
</tr>
<tr>
<td>B</td>
<td>Cotton Red</td>
</tr>
<tr>
<td>C</td>
<td>Polyester Green</td>
</tr>
<tr>
<td>D</td>
<td>Polyester Beige</td>
</tr>
</tbody>
</table>

Machine set-up

Two sides of the same fabric differs regarding appearance.
Process

Fabric and stripes

Two color report, eight systems, twelve rounds, six yarn cones in each color. See picture 1 and 2.

The previous test was limited to four colors, but the wide of the stripes were unlimited. In this constellation, the wide of every stripe is limited to six rounds. One system has twelve knitting systems and twelve cones. Here, there are six knitting systems in one color and six in another color.

The limitations here is that green from B and turquoise from C can not be combined since both of them is the starting color of their system. To present this, see illustration 2. The “lonely” color block could be combined in three different ways, the three colors on the opposite side, example turquoise could be combined with red, yellow and orange, since these three is presented in the second part of their system.

Since every system is possible to split in two, it is also possible to split it into even more colors, max 12 colors per system, total 48 colors who can do one round each, as maximum.

This was tested by swishing every second cone of two “half” systems. When using only one of the knitting systems, there became a repetition of two colors presenting one round each for six rounds. The effect provides a fabric with small swishes in compression (3) following one bigger stripe.

Stripe combinations was developed, but reduced in the end because of the lack in achieving the given color effects based on classic color theory.

When different developments were made in multicolor trying to provide color effects as blending and change in appearance, I took a step back in the process and continued my work from the two-colored stripes, where each stripe was equal to the other in size, to focus on the behavior of the material, the specific color effect and the full tube as a total to create silhouettes. To add multi-stripe in this context would be confusing and a sharp point was desirable for the project.

Challenging the machine to add more colors than it is aimed for.
Following chapter gives an overview of the process for shape in this collection. The starting point for shape come from a traditional way of creating garments based on the original form of the material. Often the original shape has been quadratic depending on the origin of woven fabric or animal skin. My process started in the square, a woven fabric, and with the help of clips for openings and divisions, creating garments on the body. The process continued in other forms of origin, such as the tube a jersey machine manufactures. The resulted outfits are based on the cylinder as construction. With a few cuts and seams, developed into garments. By doing so, the material usage will be reduced.
The task of this experiment was to make a garment with an inside and outside in different colors. I applied the garment to body, and made different movements, when filming the act (1). By doing so, stretch in the garment appear.

The tension parts for different movements was located (2) and marked on the garment (3).

Cuts were made in the opposite direction of the tension marks, to release the tension when the body was moving (4). When the garment was not affected by the tension, the sliced garment was relaxed and the inner color appeared more.

The result became a piece, transforming when moving, because of tension from body to garment. This is something to developed further.

The conclusion of this task is that tension in garment can be demonstrated by using two different colors, enhancing the transformation in the garment.

This method was also tested for trousers with only one cut (5).
Process

Cutting construction

Side by side of the experimenting with fabrics, I started to explore shape. The aim was to create garments just by cutting holes and slits. I found different mathematical maps to use, well known for creating symmetry in nature, architecture or home styling.

Golden ratio is one ‘map’ for cutting that was used in this task. The golden ratio could be found in nature and in everything that is perceived as harmony.

‘Le Modular’ by the architect Le Corbusier (1954) is another method in this task, who used the human body when constructing architecture. The aim of this method was to give the use of the building an adaption to human, instead of the opposite. ‘Le Modular’ has criticized because of its inconclusions, but it was still relevant to try in this new area.

Even though the pre-work was structured and sophisticated, the result became just a pile of fabrics. This is still important for this project to build a bridge between the chiton and toga (Greece, 500-300 BC) and this collection (Raben & Sjögren, 1978).
By using the holes in one fabric, that was created in production because of yarns that got stacked or got broken in the making (6).

The tests with this material shows that wider stripes that is not ground colors is harder to make color blending in the fabric. Lines shows the shape of body when close to body (4), and the shape of movement (3).

It shows also that the material compresses in the hem (2) and expends when tied to body (1, 2, 3, 5).

Picture 7 shows a pair of trousers that was developed further in this material later, since it has a way of open up for waist and fall out from the hips, down to legs that comes in movement and transforms when walking.

To develop the shape further into garments, I made an enormous long sleeve T-shirt, using converted Issey Miyake technique (he uses twice as big pattern-making and adds the pleats and the garment shrinks).

Here, the pattern was original size and when cutting out the pieces, the fabric was hold together. Since the pattern was cut for the six of one stripe, the size became twice as big when the fabric upends up when wearing the garment.

Where the fabric bends over certain body parts, the red is shown even more and purple appeared as a blending of the two stripes. The blending is also happening when moving.

This cached the idea of keeping the full tube, as it is big volume of fabric. By making one or two cuts, the body could enter the fabric and the same movement as in this test could be applied.
Process

Shape

This is a study in half scale tryouts, to see how the full tube could be used when making clothes. By adding one or two cuts, provide clothes from the tube. The mission was to make as few holes as needed. I could make the tube into half or a carter of a full tubes width, to make several close to body or voluminous variations. The outfits that was taking further has black frame.

1. Full tube, two holes.
2-4. Full tube, two mini holes for hands or arms.
5. Trousers in small lines, half tube.
7-8. Half tube with one hole. Longer and shorter tube makes sleeves look different.
9. Tube with two small holes in the end of a half tube.
10-12. Half tube with two holes on parallel sides.
13 & 17. One full tube cut up into squares and sewn together in opposite direction. Three holes left for body to pass through.
14-16. Corter of a tube, cut and sewn together in opposite direction as a tight dress to make the body provide the effect of the material, bending and compressing because of the body curves.
18. Same construction as 8, but in full tube. One hole for neckline.
19. Trousers in full tube, shorter legs and small stripes. Top in same construction as 1, two holes for body, but curter of a full tube in size.
20. Same as 1, but new construction where under-dress holds up the under hole, creating volume for the full tube and makes a top instead of a dress.
Process
Shape

In order to find simple silhouette from the tube, some experiments were made. The tests are presented with three pictures of the silhouette on a doll, and one picture to see the flat construction.

1. The first outfit is made by half tube with a seam, i.e. a full tube cut in half. One part of the length where the seam is placed is left untouched without sleep, leaving an opening for neck and arm.

2. This dress is two half pieces cut apart and sewn together again, till half. The other half is sewn together separately. This results in a tunic with seam front and back (that could be reduced) and seams on the top of the sleeves. In the crossroad, a space is left unsewn for head to fit.

3. Third test is the same construction as number 2, but without seam front and back. This provides a shape that is more voluminous, since the seams are not there to over-burden the fabric against body.

4. Last test is a combo of the first (1) and the other (2 & 3), to make a close to body garment. The half tube is sewn together and the seam is placed at the back. Two arms are created and a neckline is made by not sewing the fabric together at the crossroad. The sleeve seams are placed on top of the arms. There is also added a detail picture of how the lines is curved from horizontal center front, over neckline, shoulder as vertical and back to horizontal again, for sleeve. The horizontal lines provide a bounce when walking.
This outfit is made from a full tube. The silhouette had to be as intact and voluminous as possible, to enhance the effect of color blending when moving.

The only cut is a straight (see picture 5) above center of the fabric. For finish, a small tube is made and sewn together with the opening.

The inner dress has one armhole (see picture 2) and dresses the body from inside. The sleeve opening of the outer dress is big and without the inner dress, skin could be exposed during the use of the garment. The inner dress has also a wide shoulder, since the fabric roles in the edges and by making the shoulder wide, the inner fabric is invisible from outside.

Picture 1 and 3 shows the dress ready on a doll. Picture 6 and 7 shows how the dress looks when lying flat.
The previous chapters where color, shape and jersey were developed, resulted in a common output. Following pages will present the result, and how these were given shape, right color effect and construction.
Making

To demonstrate the construction of following outfits, there is one sketch for each outfit.

- Black lines are demonstrating the outline if the tube, the full fabric.
- Grey fields are for undergarment inside the garment.
- A red field is demonstrating removed fabric from full tube.
- Red line is a hole or cut for the body, providing necklines, armholes, etc.
- Green line is also holes, because of start and end of the fabric piece.
- Blue line is for seams.

Construction Outfit.2

Fabric gets out from the machine like this

NECKLINE
UNDER-GARMENT
HEM

Fabric gets out from the machine like this

NECKLINE
REMOVED FABRIC
Full tube dress
Same construction for both dresses

Color.
Yellow and blue blends into green.
The composition within the outfit provides solid blue (hemline) and solid yellow (inside of fabric for sleeve) inbetween the interacting parts.

Silhouette.
Full tube with one cut. Dress inside as finish. Roule-edge fixed by hand. Overlock seam in blue, yellow and green threads.

Color.
Orange and purple (blends into pink).

Silhouette.
Full tube with one cut. Same silhouette as the one in yellow and blue, but demonstrates how the effect of the size in stripes differ. When wider, the contrast colors are more separated then the same colors behave in smaller lines. See how the orange is dominating or blending with purple into pink, because of size. Three different sizes in lines is demonstrated in this dress. Dress inside as finish.
Full tube
Trousers and dress

Color.
Purple in two different combinations, one with orange and one with grey.

Silhouette.
Full tube trousers. Top in 1/4 tube for upper part and half tube for lower part, to create a closer to body top, with horizontal and vertical lines that meet.

Color.
Two different underlaying colors perceived as the same depending on surrounding colors. Blue and yellow in combination and green with purple in combination.

Silhouette.
Full tube with two holes. One dress under for finish.
Squear dresses

Color.
Lavender and grey wide stripes to present the effect of the material in different sizes.

Silhouette.
Two full tubes cut apart and added together again.

Color.
Dark color over bright colors. Two colors under.
This shows the effect of the fabric when compressing, since both colors is covered and does not affect the appearance of the dark purple.

Silhouette.
The silhouette is made by one full tube cut at one side and attached seams to create the curve into a dress.
Full tube dress
Same construction for both dresses

Color.
Two blue colors in different lightness is still providing transformation in the fabric.

Silhouette.
Half tube with two holes to interact more of the legs and leave some of the body to enhance the tube-construction.
Developments
Full tube dress and top

Color.
Orange and blue. One light blue combination where orange takes over. Combination for skirt in orange and Klein blue, where both colors are equally intense.

Silhouette.
Full tube top with mini skirt.

Color.
Lavender and grey wide stripes to present the effect of the material in different sizes.

Silhouette.
Top in half tube with two cuts. Development to make both top and trousers into tube constructed garments.
Result and Conclusions

When entering this project, my aim was to investigate how color transformation could appear in textiles, by the use of movement made by the body. By adding classic color theory when creating a transforming fabric, the color blending could occur in the garments. The fabric re-surge got in to weaving techniques, knit, jersey and tufted. Every technique was explored and adapted to make color-blending appear in movement. The silhouettes were made to create movement for a two-faced material (i.e. one color/print on one side, another on the other). Color was the main purpose and focus, the material as a help.

As the project developed, circular knit became the selected technique. Different structures were adapted, as piké, flat knit and stripes in different sizes. When creating stripes, one in polyester and one in cotton, the different qualities shrieked in different direction. This fabric became the selected, and is now the key to all of the outfits. It was both two faced and had a transforming surface, that could interact both when close to body and in voluminous garments.

Jersey fabric has an original shape that is different from other ground shapes when it comes to fabrics. Jersey is made in a circular knitting machine, and there for the fabric comes out as a tube. This opened up for creating shapes based on the tube, instead of the square, more common in historical and today’s garment construction.

The material became the focus of the project, its properties as a compression and the circular original construction of the fabric. The color is to enhance the effects of the material through light, darkness, contrast, depending on size of stripes and body position.

What emerged was new materials and optical illusions of color-blending when the textiles were made into clothes and were adapted to a moving body. This led me to consider how movement of body could affect a garment and the possibility of a textile. Finally, the effects were demonstrated in a serial of garments transforming when observed from a distance, close, by bending or by stretch.

With a few cuts and seams, the tube is developed into garments. Some outfits are in full tube, some in half tube and some even smaller tubes or rectangular pieces. One hole is made to fit the head, another for leg and one for neck and arm together. The holes that the tube creates by its construction from the machine is also used, and a base when constructing the holes. By doing so, the material usage is minimal and the waste when constructing clothes, we know of today will be reduced.

The result of the material contracts in two directions (depending on the yarn fiber quality) and creates the rib structure, makes the material perceive in a resting state as entirely in one color from one side, another from the other side. When the material is exposed to tension, the second line appears. When the material is observed from a distance, or in movement (the lines “opens and closes”), an illusion of color blending occurs.

Different color effects are presented in the collection. One example is when one color dominates the other by its appearance, another where the colors blend into a third, and one where there are four colors in the outfit but appears to be only three because of the effect of combined colors in interaction.

The result is different suggestions of color tones depending on size of the stripes, the saturation of the colors and placement on body. This is important since color is an aspect that is often applied later on in the design processes. Here, color is a dominant aspect for the making of the garments.
During the last years, rib has been a trend factor and used for tops, dresses and trousers. Rib is a knitted construction that is able to expand and contract, which usually takes form in clothes close to body. The surface of the fabric used for this collection has the same qualities as rib, but the construction is different. By using cotton and polyester yarns, the rib effect can be made horizontal on a single jersey machine instead of a machine with double needle bed, as it is for rib. This technique opens up for possibility in two bright colored stripes, which is not possible for a rib, even when platted techniques are applied.

Discussion

The final collection is a series of seven outfits made in special developed jersey. The jersey fabrics are made in different color combinations, from colors close to each other, contrasting colors, and colors that interacts with each other. By using the full tube of circular knitted jersey, the silhouettes were constructed. The necklines, sleeves and hemlines are created by the fabrics construction, or by cuts created by men to fit the body.

Accessories are tufted by thicker yarns. The colors of the accessories are made to enhance the effect within the garment, or to mimic the combinations. The tufted material works as pixels on a screen and blends into colors or shades.

As the screen of computer and mobile phone is built upon pixels, internet in general gives this project a commercial position. From being an internet that has been dominated until recently by pictures and text, the short movie making has received an uplift. Thanks to the applications in Instagram, live broadcasts, the GIF’s and the YouTube-stars which has taken over the relay from the bloggers and still image. It seems like we have an increasing need for the moving pictures, which these clothes will be pressed best through.

Also, the stores of today as we have known them, is a place for transaction. Meanwhile the shopping is now days more located to the internet applications, the store must be a place for interaction, experience and event. By adding this type of clothes, the full experience of the clothes is in real life.

The potential of the clothes for resale could be by combining the clothes with well-known archetypical garments, as blue jeans or stockings. The silhouettes could also be developed into garment closer to body, and adjusted to silhouettes easier to categories, for example cardigan or leggings. Some more commercial garments have been made during this project, but since the shape was forced this has been reduced from the report. This could be developed further.

The limitation of this method regarding silhouette and material in combination for construction, is that the bracket where the machine makes yarn change is distracting and can not be removed if you will stay true to the method of full tubular. Maybe it could be used as a detail or get decorated, but this project imitates to the full silhouette expression and the theory, excluding decoration. This could also be developed further.

Since the fabric is made on a circular knit, there is a drawing in the garment that spirals around the body when the garment is worn. If the stripes direction in the material should have a vertical or horizontal inclination, rather than a diagonal, this can not be adjusted. This is a problem that I tried to master during the making of the garment.
4.1 Sources Literature

5. Lindqvist, Richard, 2013, On the logic of pattern cutting, Borås: University of Borås

5, 6 & 10. Landahl, Karin, 2016, The myth of the silhouette, on form thinking in knittwear, Borås: University of Borås

6. Iyer, Mammel and Schäch, 1991, Rundsticken, Bamberg: Publisher Meisenbach

7. Kooroshnia, Marjan, 2015, Creating Diverse Color-Changing effects on Textiles, Borås: University of Borås

4.2 Sourses Pictures & Webb

4. Marc Chagall quote (Written: 2011-12-11) (Found: 2017-05-03)
 https://www.goodreads.com/quotes/472143-all-colors-are-the-friends-of-their-neighbors-and-the

5. Futur 404, Issey Miyake, Full tube dress (2017-03-20)

6 & 8. Issey Miyake (UÅ, June-22)(2017-04-18)
 https://agnautacouture.com/?s=a-poc&submit=Search

6. PERU, Garments from Inca Tombs (2017-02-23)

7. Josef Albers, Homage to the Square (UÅ) (2017-04-01)
 http://albersfoundation.org
 http://albersfoundation.org/art/josef-albers/paintings/homages-to-the-square/index/

7. Designbloggarna, Evelin Kägo (2017-02-01)(Found:2017-03-12)
 http://designbloggarna.se/bloggar/baltic-vibes-by-karolin/lindex-tomorrow-av-evelin-kago/

 https://www.youtube.com/watch?v=flrnFrDxjlk

7. Issey Miyake, Fall 2017, Ready-to-wear (2017-03-03)(Found: 2017-03-14)

8. VOGUE, Tom Blanks (Found: 2017-04-10)
 (article: Issey Miyake collection AW-2010, Paris)

 http://www.vogue.com/fashion-shows/fall-2010-ready-to-wear/issey-miyake

8. Ina Hjelte's degree work from 2012, 'i.dress'(2012-03-06)(Found: 2017-02-05)
 http://bada.hb.se/bitstream/2320/12200/1/2012.3.6.pdf

 https://www.wired.com/2004/04/miyake/

 https://www.youtube.com/watch?v=87ZHLJoTyzQ

 https://designschool.canva.com/blog/what-is-the-golden-ratio/

33. Sgueard construction for clothes, Greece 500-300 BC
 Raben & Sjögren, 1978, Kropp och kläder, Portugal: Broby-Johansen (See page 36, 37, 42, 49)

33. Le Corbusier, Illustrator to explain the method of Le Modulor, 1954
 http://www.choijinhyuk.com/generative-aesthetics
This appendix summarizes how this collection continued through Stockholm Fashion Week, London Fashion Week, external publications in the media as well as sponsors. It is also including a photoshoot with photographer, make-up artist and two models in a selected location.
Sponsor

FW Fashion Week Stockholm S/S 2018

EVELYN 900 SEK
The square shaped toe paired with the
new suede and nubuck adds a
contemporary touch to this classic
style from our group. Stacked, stacked
from high heels.

Colour: BLAN
Upper material: GOAT SUEDE
Lining material: TEXTILE
Outside material: RR

Heel height: 38 mm

PIA 1200 SEK
Heel new edgy subtle boot
and the slim fitting mid
height heel. The perfect
shade of the black stretch
fabric creates a fabulous
look. Ideal for the shorter
lady, creating a flatterning silhouette.

Colour: BLACK
Upper material: TEXTILE
Lining material: TEXTILE
Outside material: RUBBER

Heel height: 63 mm
Shaft height: 130 mm
Shaft width: 240 mm

PIA 1800 SEK
Strengthen your legs with
these over-the-knee boots
from new group. The
edgy platform wedge and
the black stretch fabric
creates a flawless fit and a
flatterning silhouette.

Colour: BLACK
Upper material: TEXTILE
Lining material: TEXTILE
Outside material: RUBBER

Heel height: 63 mm
Shaft height: 265 mm
Shaft width: 310 mm

BIBI 1200 SEK
Let the wedge add some
edgy new ankle boot Bibi!
Crafted from soft leather
bound to make a statement
with its pointed toe, stacked
wedge heel, clean upper and slightly
higher shaft.

Colour: SILVER
Upper material: METALLIC LEATHER
Lining material: METALLIC LEATHER
Outside material: RUBBER

Heel height: 60 mm
Shaft height: 150 mm
Shaft width: 240 mm
External Publications

https://bon.se/article/swedish-school-of-textiles-exit-2018/

Jersey, Sure!
Clothes & Accessories: Caroline Moëll

Photo and editing: Angelique Johner
MUA: Lovisa Lunneborg
Models: Le Management, Ida Rydel & Veronica Hjertén
JERSEY, SURE!
SPECIAL DEVELOPED JERSEY KNITS
WITH COLORS EFFECTS

A SPECIAL THANKS TO...

TECHNICAL PROFESSIONAL:
Tommy Martinsson

PROOFREADERS:
Richard Vahul
Arvid Jansson
Inger Dahlbom

PEPP-TALK PROFESSIONALS:
Richard Vahul
Lisa Setterberg
Lena Svensson
Ulrik Martin Larsen
My family: Lisbeth, Mats, Agnes, Jenny

TEKOSTIFTELSSENS STIPENDIEFONDER

EXAMINER:
Hanna Landin

SUPERVISOR:
Stefanie Malmgren De Oliveira

CAROLINE MOËLL
BACHELOR DEGREE 2017