Hur påverkas lönssamheten i textilfiltertillverkningsverksamhet då olika grad av automatiseringsnivå tillämpas?
Abstract

The search for profitability in these days’ enterprises is naturally a search for cost savings. For manufacturing enterprises is often the biggest cost founded in labour. In the search for saving some of these costs, automated manufacturing is a common and successful solution. The enterprise Kinna Automatic AB has come up with an automated solution for fabric filter manufacturing, this solution needs to be investigated to know how it will affect the fabric filter enterprises’ profitability. This study uses two different degrees of automation, since the automated sewing line is modularized. The framing of a question for the study is “How does different degrees of automation impact on the profitability in fabric filter manufacturing?”.

The two degrees of automation is in the study compared to the classic way of fabric filter manufacturing, the manual way. Calculations of productivity shows that the needed labour time will decrease from an implementation of the automated line. This decrease affects the profit positively, and the capital turnover decreases from the investment, which then make the profitability increase for the both degrees of automation. Since the sewing line still is a prototype and not a finished product, it is not ready yet for 100 percent manufacturing. This of course affects the reliability and validity of the study, but not that much since the purpose of the study is to give a pointer for what way and how much the profitability affects. The study shows that the labour costs are being lowered when the two degrees of automation implements. It gives us the conclusion that the two degrees of automation affects the profitability of the enterprise positively when being implemented.

Keywords: manufacturing measurement, automation, manufacturing profitability, capital cost, work in process.
Sammanfattning

Nyckelord: mätning av tillverkning, automatisering, produktionslönsamhet, kapitalkostnad, produkter i arbete.
Förord

1 Inledning

1.1 Syfte

Studiens syfte är att hitta skillnader som påverkar lönsamheten mellan två olika tillverkningssätt och mäta dessa. Då ett nytt automatiskt tillverkningssätt ska sättas till världen bör det jämföras med sin föregångare, i detta fall det manuella tillverkningssättet. Då
tillverkningslinan är modulariserad och därmed kan byggas på olika sätt, kan den också vara olika mycket automatiserad genom olika kombinationer. Detta kommer att tas i akt i studien då hela produktionslinans effektivitet, och därmed lönsamhet, beror på graden av automatisering.

1.2 Frågeställning

Studien kommer att undersöka lönsamheten i de olika graderna av automatisering av textilfiltertillverkning. Så frågeställningen som studien ställer blir följande: Hur påverkas lönsamheten i textilfiltertillverkning då olika grad av automatisering tillämpas?

1.3 Avgränsningar

Studien avgränsas till en nyuppfunnen produktionslinna för textilfilter som tagits fram av Kinna Automatic AB, jämförelseobjektet avgränsas till en befintlig manuell tillverkning på Svenska Textilfilter AB. Lönsamhetsberäkningar och materialflöden avgränsas till fokalfirman, alltså kommer leverantörer och kunder som ligger före respektive efter förädlingsprocessen inte att innefattas av studien. Fokalfirman är ett fiktivt företag som tillverkar textilfilter med storleken 5000x130mm. De olika grader av automation som studien avgränsar sig till är ”KA semi-auto”, ”Snäppring &förstärkning” och ”Manuell”.
2 Metod

Detta kapitel är ämnat att beskriva de olika tillvägagångssätt som använts i studien. Samt de möjligheter till tillvägagångssätt som litteraturen erbjuder.

2.1 Litteratursökning

Bryman (2011) skriver att syftet med att söka igenom tidigare skriven litteratur kan vara för att få svar på följande frågor:
- Vad är redan bekant eller känt på området?
- Vilka begrepp och teorier är relevanta för området?
- Vilka metoder och forskningsstrategier har tillämpats på området?
- Finns det några viktiga motsättningar?
- Finns det några motsägande eller inkonsekventa resultat?
- Finns det några frågor som inte besvarats?
2.2 Informationsinhämtning

2.3 Arbetets gång

2.4 Reliabilitet och validitet

Tillvägagångssättet i denna studie kommer i grunden från tidigare forskning och annan litteratur. Därmed är det tillvägagångssätt som blivit prövade tidigare samt justerade varje gång då de bytt ägare. I och med detta finns det en reliabilitet samt replikerbarhet i studien.

3 Teori

I kapitlet Teori kommer relevant litteratur och forskning som tidigare gjorts läggas fram.

3.1 Lönsamhet

- Identifiera kostnader för resurser som utför betydelsefullt arbete inom företaget.
- Mäta effektiviteten på resurser som utför betydelsefullt arbete inom företaget.
- Identifiera och mäta nya resurser som kan förbättra företags aktiviteter.
- Klara av de föregående tre punkterna genom att ändra tekniker.

3.2 DuPont

![DuPont-modellen](image)

Figur 3.2.1. DuPont-modellen.

3.2.1 Räntabilitet på totalt kapital

\[
\text{Räntabilitet på totalt kapital} = \text{Vinstmarginal} \times \text{Kapitalomsättningshastigheten}
\]
3.2.2 Vinstmarginalen

Vinstmarginalen visar hur mycket varje krona av omsättningen ger till resultatet, (Melvin, Boehlje, Dobbins & Gray 2004). Enligt Soliman (2008) påverkas vinstmarginalens storlek av olika faktorer, några faktorer är prissättning, produktens innovationsgrad, varumärkesutbredning, marknadsnisch, produktplacering och vilken i ordningen produkten var ut på marknaden av den produktkategorin. Han skriver också att vinstmarginalen är kvoten av resultatet för finansiella kostnader och omsättningen,

\[\text{Vinstmarginal} = \frac{\text{Resultat före fin.kost.}}{\text{Omsättning}} \]

3.2.3 Kapitalomsättningshastigheten

Kapitalomsättningshastigheten mäter hur mycket intäkter varje krona av tillgångarna genererar, alltså hur effektivt verksamheten använder sina tillgångar, (Melvin, Boehlje, Dobbins & Gray 2004). Utnyttjandet av, och effektiviteten, i tillgångarna, som generellt kan sägas vara utnyttjandet av lokaler, fabrik, maskiner, lager och andra former av kapital som används till värdeskapandet menar Soliman (2008) är flera saker som vävs in i mättalet kapitalomsättningshastighet. Kapitalomsättningshastigheten är kvoten av omsättningen och de totala tillgångarna,

\[\text{Kapitalomsättningshastighet} = \frac{\text{Omsättning}}{\text{Totala tillgångar}} \]

3.2.4 Kurvor

3.3 Automation

Enligt NE.se (2017b) är automation i regel samma sak som automatisering, vilket de definierar som ”…införande av steg i en process som gör att processen mer eller mindre går av sig själv.”. De skriver vidare att ”Syftet med automatisering kan vara att avlasta människan arbete och risker men också att höja effektiviteten och kvaliteten i en process.”. Det finns olika fördelar med att implementera automatiska lösningar i en tillverkning enligt Boer, Hill & Krabbendam (1990). De listar fördelarna på följande vis.

4. **Spin-offs.** Standardisering av produktdesign, verktyg och armaturer. Mer kunskap om avancerad tillverkningssteknologi. Förbättrad logistik och kvalitetsshantering.

5. **Andra förbättringar.** Ett steg mot integrerad tillverkning och datorstödd design samt tillverkning (CAD / CAM). En förbättrad företagsbild.

3.4 **Att mäta produktion**

3.5 Produktivitet

Enligt ISO (2014) benämns den faktiska tillverkningstiden på en produkt med APT, förkortningen kommer från ordföljden ”actual production time”. Standarden definierar mätetalalet som ett mått på den tid som lagts på produkten under tillverkningen och varit värdeadderande. Ett annat mätetal är APWT, här står förkortningen för ”actual personal work time”. Detta mätetal definieras som den tid personal lagt på produkten under tillverkningen. Eftersom den totala värdeadderande tiden i en produktion med automatiserade moment bör vara högre än tiden personal lagt på produkten, bör förhållandet mellan APT och APWT vara följande. APT < APWT.

Enligt Bernolak (1997) kan produktiviteten mätas genom att antalet tillverkade produkter ställs i förhållande till hur många personaltimmar som krävts för att tillverka de aktuella produktarna. Han påstår då att man kan använda kvoten av (antalet tillverkade produkter / antalet förbrukade personaltimmar), för att sedan jämföra med samma kvot från ett annat
tillfälle eller produktion. En annan jämförelsekvot Bernolak förespråkar är (antalet tillverkade produkter / antalet personal använt för tillverkningen).

3.6 Just In Time (JIT)

3.7 Kapitalbindning och materialhantering

När man pratar om kapitalbindning och materialhantering så pratar man inom det engelska begreppet supply chain, som på svenska betyder försörjningskedja. En försörjningskedja är det nätverk som företag och organisationer utgör med material och informationsflöden uppåt och neråt i kedjan för att till slut ge värde i form av färdig produkt eller tjänst för kunden (Christopher 1998). I detta fall från att material kommer till fökalfirma till att den färdiga produkten lämnar fökalfirman. Genom hela denna väg finns det ställen där kostnader kan uppstå, dessa kostnader står för den största delen av företagets totala kostnader enligt Pettersson och Segerstedt (2013). De skriver vidare att man med anledning av dess omfattning därfor delar upp sin försörjningskedja i sex olika kostnadsställen, där varje kostnadsställe innehåller några undergrupper var, se Figur 3.7.1.
Denna studie är avgränsad till område ett, tre och fem, då två, fyra och sex inte berör textilfiltertillverkningens lönsamhet eftersom kunden betalar för transport och installationskostnader. Administrationskostnaderna ingår inte i studiens resultat.

3.7.1 Tillverkningskostnad

3.7.2 Lagerkostnad
Kostnader för hantering av material, före och efter produktionen, sker under samlingsnamnet lagerkostnader, likaså gäller personalkostnader och anläggningskostnader för lager, (Pettersson och Segerstedt 2013). Det som i detta fall är relevant för studien är samtliga kostnadsposter eftersom ledtiden enligt Ouyang & Wu (1996) påverkar mängden lager som krävs för en viss servicenivå. De menar att när en minskning av ledtiden sker kan säkerhetslagret minskas samtidigt som servicenivån mot kund ökar, enligt.

3.7.3 Kapitalkostnad
4 Fältstudie

Detta avsnitt har för avsikt att ge en bild och förklara den data och information som nämns i analysen. En översikt över inhämtad data kommer att ges på ett så tydligt sätt som möjligt för att analysdelen sedermera ska vara lätt att förstå. För att hålla på Svenska Textilfilter ABs integritet används fantomsiffror för att illustrera uppkomsten och vägen fram till förhållanden som sedan är de relevanta siffrorna.

Nedan följer en beskrivning av de tre olika graderna av automation, ”Manuell”, ”Snäppring & förstärkning” och ”KA semi-auto”. Beskrivningarna talar om vilka moment de olika automationsgraderna innehåller, samt i vilken ordning momenten görs.

4.1 Tillvägagångssätt för tillverkningssätt ”Manuell”

![Diagram](image)

Figur 4.1.1. Det manuella tillverningssättets layout.
4.2 Tillvägagångssätt för tillverkningssätt ”Snäppring & förstärkning”

Precis som i tillverkningssätt ”Manuellt” sys en filtertub ihop i långsömnaren. Därefter förflyttas filtertuben till den automatiska sylinan, där sätts den in av en operatör för att sedan en snäppring och förstärkning ska sys på automatiskt. Efter detta förflyttas den till en sömmare som syr på botten. När filtertuben varit hos sömmaren är den klar. Vart och i vilken ordning stegen görs visas i figur 4.2.1.

![Diagram](image.png)
Figur 4.2.1. Det semi-automatiska tillverkningssättet ”Snäppring & förstärkning”s layout.

4.3 Tillvägagångssätt för tillverkningssätt ”KA semi-auto”

En filtertub sys, precis som det går till i det traditionella tillverkningssättet, med hjälp av en långsömnare som syr ihop ett tyg till en filtertub och sedan skär av filtertuben till rätt längd. Därefter hanteras filtertuben av en operatör som viker ihop, och sedan stoppar in filtertuben i sy-linan. I sy-linan sys i ena ändan en snäppring på samtidigt som en förstärkning sys. Sedan förflyttes filtertuben automatiskt vidare till sylinan som i ett sista steg syr på en botten. Figur 4.3.1. visar i vilken ordning momenten görs.
4.4 Den automatiska sy-linans olika utföranden

Som beskrivet skiljer sig tillverkningssättet ”Manuell”, ”Snäppring & förstärkning” och ”KA semi-auto” på tre olika arbetsmoment. De tre som skiljer sig åt är insättning i maskin och upplockning, eller att snäppring, förstärkning och botten sys manuellt eller automatiskt. I figur 4.4.1. visas vilka moment i de olika automationsgraderna som är manuella samt automatiska. De gulmarkerade momenten är automatiska, de vitmarkerade momenten är manuella.

![Diagram](image)

Figur 4.3.1. Det semi-automatiska tillverkningssättet ”KA semi-auto”s layout.

4.4.1 ”KA semi-auto”

Den högsta graden av automation kallas i studien för ”KA semi-auto”. Detta tillverkningssätt är det som skiljer sig mest från det traditionella tillverkningssättet som benämnts ”Manuell”. ”KA semi-auto” använder sig av momenten Långsömnaren, Manuell förflyttning, Insättning i

4.4.2 ”Snäppring & förstärkning”
Denna grad av automation är lägre än ”KA semi-auto”. Till en början är automationsgraderna ”Snäppring & förstärkning” och ”KA semi-auto” identiska, det är inte förrän efter momentet Snäppring och förstärkning som de skiljer sig åt. Här saknar, till skillnad från ”KA semi-auto”, ”Snäppring & förstärkning” det sista momentet på automatisk väg. Botten som är det sista momentet är manuellt utfört här, istället för automatiskt utfört som det är i ”KA semi-auto”.

4.4.3 ”Manuell”

4.5 Rådata om de olika tillverkningssätten
Den data som analysen använder sig av har valts ut för att kunna ligga till grund för uträkningar om tider i tillverkningsprocessen. Dessa tider efterfrågas då dess sammanställningar ska kunna jämföras så att de tillslut kan påvisas en ökning eller minskning i tillverkningsprocessens effektivitet.

Både *Botten* och *Snäppring och förstärkning* kan sys manuellt av sömmare, alternativt automatiskt av den automatiska sy-linan. Tabell 4.5.1. innehåller den data som samlats in om Svenska Textilfilters manuella produktion och den automatiska sy-linan. För att behålla Svenska Textilfilter AB:s integritet så visas alla siffror omgjorda till fantomsiffror där det högsta av de två alltid är 100, och den lägre siffran är lika många procent lägre som i verkligheten. Alltså skulle ett moment som tar hälften så lång tid att göra automatiskt jämfört med manuellt, skrivas som att det manuella sättet tar 100 sekunder, och att det automatiska sättet tar 50 sekunder. När de i verkligheten tar 30 sekunder respektive 15 sekunder.

<table>
<thead>
<tr>
<th>Moment</th>
<th>Tid manuellt</th>
<th>Tid automatiskt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Långsömnare</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Manuell förflyttning</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Upplockning resp. Insättning i maskin</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Snäppring och Förstärkning</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>Botten</td>
<td>100</td>
<td>33</td>
</tr>
<tr>
<td>Materialåtgång</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Upptagen fysisk plats</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Energiåtgång</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

4.6 Kapitalbindning

Informationshämtningen har landat i att en rimlig orderstorlek att räkna med är 300 stycken textilfilter, där varje filter består av ca 2,5 kvadratmeter filter tyg. För att kunna tillverka dessa krävs ett materiallager före produktion. Detta behålls vid en automatisering i samma storlek som tidigare då man ser vinsten i att ha en högre servicenivå än tidigare. I produktionen byggs sedan en mängd av textilfilter upp, i detta fall 300 stycken fördelat på produkter i arbete samt färdiga produkter. Tillverkningen sker direkt mot order vilket inte ger något färdigvarulager.
mer än under den tiden det tar för ordern att bli färdig. Dock bär dessa produkter ett värde som är nämnvärt. Samma gäller för de produkter som befinner sig i arbete. Att ha en ”Just In Time” tillverkning är viktigare än att minska kapitalbindningen för Svenska Textilfilter AB.
5 Analys

5.1 Produktivitet

5.1.1 Tillverkningskostnader med hänsyn till produktivitet

Då den automatiserade sy-linan, oberoende av automatiseringsgrad, gör åt lika mycket material som det traditionella tillverknings sättet gör, blir det ingen minskad materialkostnad. Vad det gäller tillverknings tiden, så finns det en markant skillnad. För att kunna se skillnader mellan ledtiderna för de olika tillverknings sätten och graderna av automation sätts de i jämförelse med varandra där det manuella tillverknings sättet är noll. När skillnaden mellan ledtiden för de olika graderna av automatisering och ledtiden för det manuella tillverknings sättet sätts i förhållande till varandra, får man följande förhållande, se figur 5.1.1.
Diagrammet visar att, då tillverkningen sker med automatiseringsgraden ”KA semi-auto” tar det 64 procent kortare tid att färdigställa ett textilfilter än vad det tar med manuella tillverkningssättet. Med tillverkningssättet ”Snäppring & förstärkning” tar det 48 procent kortare tid att färdigställa ett textilfilter än vad det tar med tillverkningssättet ”Manuell”.

Då vissa moment automatiseras kräver de inte längre någon operatör under hela tillverkningstiden, därför kommer den faktiska personalarbetstiden inte vara lika stor som tillverkningstiden för en produkt. De moment är sömnad av snäppring, botten och förstärkning Den faktiska personalarbetstiden för produktens tillverkning bör därför också jämföras. I figur 5.1.2 jämförs tiden som personal lägger på varje produkt, mellan automatiseringsgraderna och det manuella tillverkningssättet. Skillnaden mellan personalarbetstiden för automatiseringsgraden och det manuella tillverkningssättet, har ställts i förhållande till den faktiska personalarbetstiden för det manuella tillverkningssättet.
Figur 5.1.2. Jämförelse mellan olika automatiseringsgraders och manuellt tillverkningssätt med avseende på mängden personalarbetstid.

Här visas att "KA semi-auto" kräver 89% mindre personalarbetstid för att tillverka ett visst antal filter än tillverkningssättet "Manuell". På samma sätt kräver "Snäppring & förstärkning” 61% mindre personalarbetstid.

5.1.2 Lagerkostnader

Då varken ”KA semi-auto” eller ”Snäppring & förstärkning” och det traditionella tillverkningssättet inte skiljer sig åt vad det gäller materialhantering så kan heller inte kostnaderna för den hanteringen ändras. Däremot skulle kostnaderna för materialhanteringen på lagret före produktionen kunna ändras då mängden lagerhållt material förmodligen kan komma att minska när implementeringen är färdiggjord. Men enligt Svenska Textilfilter AB

5.1.3 Kapitalkostnader

<table>
<thead>
<tr>
<th>Automatiseringsgrad</th>
<th>Jmf. m. Manuellt (% mindre PIA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA semi-auto</td>
<td>64%</td>
</tr>
<tr>
<td>Snäppring & förstärkning</td>
<td>48%</td>
</tr>
<tr>
<td>Manuell</td>
<td>0%</td>
</tr>
</tbody>
</table>

Tabell 5.1.6. Jämförelse mellan olika automatiseringsgrader och manuellt tillverkningsätt med avseende på mängden produkter i arbete (PIA).

Här visas att en minskning av produkter i arbete kommer att ske med 64% då ”KA semi-auto” implementeras, samt att en minskning på 48% kommer att ske då ”Snäppring & förstärkning” implementeras.

Eftersom Svenska Textifilter inte har något färdigvarulager skickar de produkterna så fort hela ordern är färdig. Då en implementering av automation medför en kortare ledtid i tillverkningen, medför det också en kortare tid som färdiga produkter ligger på mellanlagring för att vänta på att bli ivägskickade. Under tiden de färdiga produkterna ligger på mellanlagring efter produktionen kostar de pengar i form av kapitalkostnad för uppbundet kapitalet.
kapital, precis som produkter i arbete gör. Enda skillnaden är att produkterna här är färdiga, och därför är de värda mer kapital av den enkla anledningen att mer värde lagts ner i dem. En minskning av färdiga produkter på mellanlagring innebär en minskning av kostnader för upphandlad kapital. Denna kostnad minskar logiskt vis på samma sätt som produkter i arbete eftersom det är samma anledning till minskningen. Alltså minskar färdiga produkter på mellanlagring med 64% då en implementering av ”KA semi-auto” görs, och 48% då en implementering av ”Snäppring & förstärkning” görs.

5.1.4 Övriga kostnader
Då kostnadsbärarna fysisk plats och energiåtgång inte kommer att ändras vid en implementering av den ”KA semi-auto” eller ”Snäppring & förstärkning”, kommer heller inte kostnaderna för dem att göra det.

5.2 Effekter på produktion
För att jämföra hur mycket som producerats i tillverkningen med hur mycket man offrat för att producera det, ställer man antalet tillverkade produkter i förhållande till hur många personalarbetstimmar som gått åt för att tillverka dessa produkter. I Tabell 5.2.1. har skillnaden i antalet produkter mellan automatiseringsgraden och det manuella tillverkningssätt ställts i förhållande till det manuella tillverkningssättet.

Tabell 5.2.1. Jämförelse mellan olika automatiseringsgrader och manuellt tillverkningssätt med avseende på antal tillverkade produkter per personalarbetstimme. Siffrorna är fantomsiffror som representerar det verkliga förhållandet.

<table>
<thead>
<tr>
<th>Automatiseringsgrad</th>
<th>Antal tillverkade produkter</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA semi-auto</td>
<td>278</td>
</tr>
<tr>
<td>Snäppring & förstärkning</td>
<td>192</td>
</tr>
<tr>
<td>Manuell</td>
<td>100</td>
</tr>
</tbody>
</table>

Här visas att den högsta graden automation, ”KA semi-auto”, tillverkar 178% fler produkter per personalarbetstimme än vad det manuella tillverkningssättet gör. ”Snäppring & förstärkning” tillverkar 92% fler produkter än det manuella tillverkningssättet per personalarbetstimme.
5.2.1 Takttid
Då produktionens takttid sätts till den samma för samtliga tillverkningssätt, krävs olika mycket personal för att kompensera upp tillverkningssättets effektivitet då lika många produkter ska tillverkas. Ju mer personal som används i det manuella tillverkningssättet, ju fortare går tillverkningen, alltså ökar takttiden med antalet operatörer. Samma gäller för de två automatiseringsgraderna, tills någon maskins hastighet har överskridits av operatörernas hastighet. För att jämföra storleken på personalstyrka som krävs för att tillverka lika många produkter på lika lång tid mellan de olika tillverkningssätten, använder man förhållandet mellan antalet tillverkade produkter och antalet krävda operatörer. I Tabell 5.2.2. visas förhållandet mellan antalet tillverkade produkter under en viss tid, med antalet operatörer som krävts för operationen.

Tabell 5.2.2. Jämförelse mellan olika automatiseringsgrader och manuellt tillverkningssätt med avseende på antal tillverkade produkter per operatör. Siffrorna är fantomsiffror som representerar det verkliga förhållandet.

<table>
<thead>
<tr>
<th>Automatiseringsgrad</th>
<th>Antal tillverkade produkter</th>
</tr>
</thead>
<tbody>
<tr>
<td>KA semi-auto</td>
<td>652</td>
</tr>
<tr>
<td>Snäppring & förstärkning</td>
<td>217</td>
</tr>
<tr>
<td>Manuell</td>
<td>100</td>
</tr>
</tbody>
</table>

Tabellen visar att ”KA semi-auto” tillverkar 552% fler produkter per operatör då takttiden hos de tre tillverkningssätten är den samma. Automationsgraden ”Snäppring & förstärkning” tillverkar 117% fler produkter per operatör än tillverkningssättet ”Manuell”. Anledningen till detta är att automationsgraderna ”Snäppring & förstärkning” och ”KA semi-auto” inte kräver lika många operatörer som tillverkningssättet ”Manuell”.

5.3 Lönsamhet vid implementering av automatiseringsgraderna
Då en implementering av en automatiserad sy-lina kommer att påverka omsättningen och kostnaden för tillverkning av produkterna, kommer den också påverka de olika nyckeltalen i DuPont-modellen. I figur 5.3.1. visas de aktuella siffrorna i ett DuPont-diagram.

5.3.1 ”KA semi-auto”
Vid en implementering av ”KA semi-auto”, minskar personalkostnaden med samma storlek som personaltiden, 89 procent. Detta gör att tillverkningskostnaden i sin tur minskar och ger en kostnad per produkt som är 1,4 procent lägre än det manuella tillverkningssättet. Logiskt
nog gör detta att totala kostnader också minskar med 1,4 procent. Vidare i DuPont-modellen påverkar detta resultatet för finansiella kostnader som då ökar med 36 procent. Vinstmarginalen blir därför efter en implementering av ”KA semi-auto” 36 procent högre.

Då en investering för att automatisera tillverkningen görs ökar anläggningstillgångarna i företaget. De totala tillgångarna ökar samtidigt som omsättningen i det tänkta fallet inte gör det. Detta medför att kapitalomsättningshastigheten minskar med 15 procent.

Eftersom räntabiliteten på totalt kapital är direkt påverkat av både vinstmarginalen och kapitalomsättningshastigheten ändras också den vid en automatisering av tillverkningen. Med automatiseringsgraden ”KA semi-auto” kommer räntabiliteten på totalt kapital att öka med 15,2 procent.

För att göra detta tydligt finns en DuPont-modell i figur 5.3.1.

5.3.2 ”Snäppring & förstärkning”

Automatiseringsgraden ”Snäppring & förstärkning” medför minskningar i personaltiden, precis som ”KA semi-auto” gör, dock inte lika kraftigt. Den krävda personaltiden och därmed personalkostnaden sjunker med 48 procent då en implementering av ”Snäppring & förstärkning” görs. Detta påverkar tillverkningskostnaden till att minska vilket ger en minskning av kostnad per produkt med 0,98 procent. Detta medför en minskning av totala
kostnader med samma 0,98 procent. Resultatet påverkas positivt och ökar med 24,8 procent. Då resultatet senare sätts i förhållande till omsättningen syns det en ökning i vinstmarginalen som mäter 24,7 procent.

Då kapitalomsättningshastigheten bryts ner till de totala tillgångarnas beståndsdelar och sedan vidare till anläggningstillgångarnas innehåll, görs en ökning av anläggningstillgångarna i from av en investering i den automatiserade sy-linan ”Snäppring & förstärkning”. Den 22,2 procentiga ökningen av anläggningstillgångar gör att de totala tillgångarna ökar med 10,7 procent. Vidare gör detta att kapitalomsättningshastigheten minskar med 9,5 procent.

Eftersom både vinstmarginalen och kapitalomsättningshastigheten ändrats av implementeringen av ”Snäppring & förstärkning” har också räntabiliteten på totalt kapital ändrats. Storleken på ändringen är 12,7 procent åt det positiva hålet.

För att göra detta tydligt finns en DuPont-modell i figur 5.3.2.

5.4 Jämförelse mellan automationsgradernas lönsamheter
Då de två olika automationsgraderna implementeras, påverkar de företagets lönsamhet på olika sätt. Som visat ovan påverkar ”KA semi-auto” mer än ”Snäppring & förstärkning”,

Figur 5.2.2. DuPont-modell över påverkan av en implementering av ”Snäppring & förstärkning”.
frågan är hur mycket mer, och på vilket sätt. I detta avsnitt jämförs automationsgraderna med det manuella tillverkningssättet.

5.4.1 Manuell

För att tydligt visa på tillverkningens lönsamhet som den är idag visas siffrorna i figur 5.4.1. i en DuPont-modell. De tre nyckeltalen vinstmarginal, kapitalomsättningshastighet och till slut räntabilitet på totalt kapital används för granskningen. Investeringarnas storlekar är approximerade av Kinna Automatic AB som ett prognostiserat värde på vad de till slut kommer att landa på.

![DuPont-modell av nuläget illustrerat av fantomsiffror.](image)

5.4.2 Vinstmarginal

Vad det gäller vinstmarginalen så blir det en positiv påverkan oavsett vilken automatiseringsgrad som implementeras. Dock påverkar de två olika automatiseringsgraderna olika mycket. ”KA semi-auto” ger en ökning av vinstmarginalen på 36 procent, medan ”Snäppring & förstärkning” ökar vinstmarginalen med 24,7 procent. En jämförelse mellan de två talar om att ”KA semi-auto”s påverkan är 8,9 procent högre än ”Snäppring & förstärkning”.

35
5.4.3 Kapitalomsättningshastighet
De olika automationsgraderna innebär olika stora investeringar. Detta avspeglas på kapitalomsättningshastigheten då den sjunker ju större investeringen är. Storleken på ”KA semi-auto”s investering medför en minskning av kapitalomsättningshastigheten med 15 procent, medan ”Snäppring & förstärkning” innebär en minskning med 9,5 procent. Jämför man de olika automatiseringsgradernas kapitalomsättningshastighet ser man att en implementering av ”KA semi-auto” istället för ”Snäppring & förstärkning” innebär en minskning med 6,1 procent.

5.4.4 Räntabilitet på totalt kapital
Då vinstmarginalen och kapitalomsättningshastigheten jämförts och visat på skillnader, bör det också bli skillnader i räntabilitet på totalt kapital. ”KA semi-auto” genererar en ändring i räntabilitet på totalt kapital med 15,2 procent då den ställs mot ursprungsläget som är ”Manuell”. ”Snäppring & förstärkning” har visat en ändring med 12,7 procent. Då man jämför de två automatiseringsgraderna med varandra, ser man att ”KA semi-auto” påverkar räntabiliteten på totalt kapital 2,2 procent mer då ”Snäppring & förstärkning” står som jämförelsegrund.
6 Diskussion

Då tiden studien skulle utföras var förbestämd och då projektet, studien använder sig av som exemplifiering, har sin egen bestämd gång tidsmässigt, gick det inte under studiens tid att sammanvälva dessa två processer optimalt. Hade tiden varit justerbar för såväl studien som projektet så hade en mer noggrannhet i studien vart möjlig. Som fallet varit, så kom studien in i projektet lite för tidigt än vad som hade varit optimalt. All data som studien skulle använt sig av, och inte minst reliabiliteten i datan studien använt sig av, fanns inte där i den utsträckning som den skulle i ett optimalt fall. Till exempel skulle studien i ett optimalt fall undersökt och inhämtat siffror på egen hand rent praktiskt, inte via tidigare mätningar. Detta gjordes inte då det fanns sociala hinder, samt att det avräddes då tiden för studien sades var för kort för att få pålitliga data. Ett annat exempel är att den nya sy-linan skulle varit ”up-and-running” till hundra procent när studien utförts, så var inte fallet. Dock har all inhämtad data varit så pålitlig och sanningsenlig den kan bli utan att den kunnat bli testad. Istället för att bli testad, har datan blivit validerad av personer kunniga på det specifika området. Då mångden tid och processernas olika stadier inte gynnade studien till hundra procent, lämnar det utrymme till vidare studier som då kan komma att bära högre validitet samt reliabilitet då tiden inte längre begränsar.

Studien har, trots dessa problem och begränsningar, kunnat genomföras och sedermera svara på frågeställningen på ett sådant sätt att den utan problem går att applicera på fler liknande projekt och fall. Detta tack vare universaliteten i den teori för tillvägagångssätt som använts.

Studien bör dock utökas för vidare undersökning om validiteten önskas höjas. I ett sådant fall bör samtliga data inhämtas rent praktiskt direkt av studien. Den nya sy-linan med sina olika automatiseringsgrader bör testas i praktiken när den är ”up-and-running” till hundra procent, för att validera uppgifterna kring hur många operatörer som krävs rent praktiskt, och självklart för att inhämta data.

Precis som Husqvarna erfariat då de automatiserat en del av sin tillverkning, visar studien på att personalstyrkan kan minskas på den delen av tillverkningen som automatiseras. Detta enligt studien beroende på grad av automatisering, men ändå visar studien på samma fenomen som Husqvarna upplevt efter sin implementering. Angående kvalitetsskillnader på produkter

Vidare kan olika implementeringar av automation diskuteras. Till exempel visar studien tydligt att implementering av en full automatisk lösning, alltså en lösning där allting är automatiserat från och med ”Långsömmaren” till och med sista sy-momentet i sy-linan, skulle ge en betydligt högre lönsamhet. Detta skulle i sådana fall göra att personalen mellan ”Långsömmaren” och sy-linan inte längre skulle behövas på den platsen. Man har i sådana fall minskat personalkostnaden för processen inom denna studiens avgränsningar till noll. Nämnvärt är att tillverkningen kräver personal före och efter den tänkta automatiserade sy-linan för att hantera materialet och färdig produkt. Dock krävs personal strax efter ”Långsömmaren” för att kvalitetskontrollera oberoende vilken grad av automation som implementeras, enligt Svenska Textilfilter AB. Självklart finns det inga egentliga gränser för hur långt man kan automatisera, en lösning där materialet packas upp från leverantör fram till att det packas till kund är ingen omöjlig, utan mest en fråga om kostnad och lönsamhet i
Projektet. Då en automatiserad lösning skulle sköta materialhanteringen båda säkrare och snabbare skulle det innebära en förbättring för arbetsmiljön samt lönsamhetsmässigt då tid som är pengar sparas.

7 Slutsats

För att avrunda och knyta ihop studien, läggs här slutsatser fram som kommit ur de olika delarna i rapporten.

Studien har tydligt visat att det finns skillnader i tillverkningssätten vad det gäller kostnader och tidsaspekter. Dessa skillnader har sedan förvaltats till att bli olika mått på produktiviteter och kostnader som går att jämföra. De tre olika tillverkningssätten har alla var sina olika fördelar och nackdelar. Men då denna studien riktat in sig på att mäta och jämföra lönsamheten mellan de olika tillverkningssätten är det också den som i slutändan betyder något.

För att dra en slutsats om hur lönsamheten påverkas då en textilfiltertillverkning automatiseras bör de olika graderna av automation ställas mot varandra. Då ursprungsläget är ett mestadels manuellt tillverkningssätt, jämförs de två högre graderna av automation med det manuella tillverkningssättet som utgångspunkt. Vid en implementering av automationsgraden ”Snäppring & förstärkning” ökar vinstmarginalen med 24,7% samtidigt som kapitalomsättningshastigheten minskar med 9,5% och ger en lönsamhetsökning från 9% till 10,16%. Samtidigt som en implementering av automationsgraden ”KA semi-auto” ger en ökning av vinstmarginalen med 36% samt en minskning i kapitalomsättningshastighet med 15%, detta ger ihop en ökning från 9% till 10,40% för lönsamheten. Detta visar tydligt att svaret på frågan hur lönsamheten i en textilfiltertillverkning påverkas då olika grader av automation implementeras, är att lönsamheten ökar beroende av automationsgrad.

Figur 7.1. visar hur lönsamheten ökar då vinstmarginalen och kapitalomsättningshastigheten ändras.

8 Referenser

