VIRTUELL PROJEKTERINGSTEKNIK
– EN ANALYS AV BIM MED AVSEENDE PÅ VR INOM KONSTRUKTION

Examensarbete– Byggingenjör

Viktor Bellini

HÖGSKOLAN I BORÅS

Examensarbetet omfattar 15 högskolepoäng och ingår som ett obligatoriskt moment i Högskoleingenjörsexamen i Byggingenjör, 180p
Nr 2017.01.12
Virtuell projekteringsteknik
En analys av BIM med avseende på VR inom konstruktion

Virtual projection technique
An analysis of BIM regarding VR in construction

Viktor Bellini, s142497@student.hb.se

Examensarbete, 15 hp
Ämneskategori: Teknik

Högskolan i Borås
Akademin för textil, teknik och ekonomi
Sektionen för resursåtervinning och samhällsbyggnad
501 90 Borås
033-435 40 00

Examinator: Lennart Jagemar

Handledare 1: Kimmo Kurkinen
Handledare 2: Thomas Almgren

Druveforsvägen 8, 504 33 Borås

Uppdragsgivare: Stiba, Thomas Almgren, Borås

Datum: 2017-09-12

Nyckelord: Virtuell projektering, konstruktion, projektering, BIM, VR, Revit, 3D
Abstract

The evolution of BIM in the construction business is something that involves major changes for many companies. When new technologies like virtual reality begin to become more prevalent, it can be difficult for companies to keep up with developments. A better understanding of how building information modeling (BIM) focusing on virtual reality in structural engineering and projection will therefore be beneficial for the projection process and thus construction.

In order to implement VR, it is first necessary that companies use three-dimensional models (3D) and modeling programs such as Revit or Tekla which is specifically designed for BIM. These types of programs plays a vital role in ensuring that the technology is used in an optimal and a user-friendly way, as constructors have a very time-consuming schedule. In addition, all participants in the project have access to a huge amount of information, where each building component has a linked data such as geometry and material. Something that makes BIM very useful is together with different plugins such as Revit structure analysis or linking timetables and cost with building components from the 3D model to create BIM 5D, where the two D-s represent time and cost. By moving one more step further and integrating VR into the model, you have the opportunity to use buildings in a context that opens up communication bridges and creates an image of projects that are close to reality.

With this in mind, in this work, tests have been performed on models to find areas where VR may be useful. Based on the constructors own experiences of design tools in combination with their thoughts and ideas, applications were developed where VR might be useful to constructors. The results of the interviews showed that VR is currently less useful for constructors in smaller project, but that it has its uses in more complex cases where the constructor needs a complement to get a better overall understanding as well as for other participants in a project. For a constructor it is therefore more suited in a project as a review tool and useful in the final stages of a project. However, it may be a tool under the projection process for other parties in projects to increase mutual understanding.
Sammanfattning

Utvecklingen av byggnadsinformationsmodellering, building information modeling (BIM) inom byggbranschen är något som innebär stora förändringar för många företag. När ny teknik som virtuell verklighet, virtual reality (VR) börjar bli mer förekommande kan det vara svårt för många företag att hänga med i utvecklingen. En bättre förståelse för hur BIM med fokus på virtuel verklighet inom konstruktion och projektering kommer därför kunna gynna företag i deras projekteringsprocess och därmed byggandet.

För att implementera VR krävs det först att företag använder sig av tre dimensionella modeller (3D) och modelleringprogram som exempelvis Revit eller Tekla som är specifikt utformad för BIM. Dessa typer av program spelar en vital roll för att tekniken ska kunna utnyttjas på ett optimalt och användarvänligt sätt då konstruktörer har ett väldigt tidsspessat schema. Utöver detta har alla medverkande i projekteringsprocessen tillgång till en enorm mängd information där varje byggnadsdel har en knuten data som geometri och material. Något som gör BIM väldigt användbart är vid användning av olika insticksmoduler som Revit structure analysis eller länka samman tidplaner och kostnad med komponenter från 3D modellen för att skapa BIM 5D, där de två D-na står för tid och kostnad. Genom att gå ytterligare ett steg längre och integrera VR i modellen så har man möjlighet att använda byggnader i ett sammanhang, som öppnar upp kommunikationsbryggor och skapar en bild av projektet som är nära den färdiga produkten.

Med detta i åtanke har i detta arbete baserats mycket på tester av modeller för att hitta områden där VR kan tänkas vara användbart. Utifrån konstruktörernas egna upplevelser av projektverktyg och deras tankar och idéer från intervjuer utvecklades användningsområden där VR kan tänkas vara användbart. Resultatet från intervjuerna visade att VR är i nuläget mindre användbart för konstruktörer i mindre projekt, men att det har sina användningsområden i mer komplexa fall där konstruktören behöver ett komplement för att få en bättre helhetsbild både för sig själv och för andra aktörer i ett projekt. För en konstruktör är det därför mer anpassat som ett granskningsverktyg samt användbart i slutskedan av ett projekt. Däremot kan det vara ett hjälpmedel under projekteringen för andra parter i ett projekt för att öka den gemensamma förståelsen.
Innehållsförteckning

Beteckningar... - 1 -
1 Inledning.. - 2 -
 1.1 Bakgrund.. - 2 -
 1.2 Syfte ... - 2 -
 1.3 Frågeställning.. - 3 -
 1.4 Metod .. - 3 -
 1.5 Avgränsningar.. - 3 -
2 Teoretisk bakgrund... - 4 -
 2.1 Bygprocessen .. - 4 -
 ... - 4 -
 2.2 Projektering ... - 4 -
 2.2.1 Konstruktörens roll ... - 5 -
 2.3 CAD .. - 5 -
 2.4 Revit... - 5 -
 2.5 BIM ... - 6 -
 2.5.1 Svårigheter med att implementera BIM ... - 6 -
 2.6 Från projekt till produkt ... - 7 -
 2.7 BIM och VR i praktiken... - 7 -
 2.7.1 VDC... - 7 -
 2.8 Virtual reality... - 8 -
 2.8.1 VR-glasögon ... - 8 -
 2.8.2 När är VR användbart ... - 8 -
 2.8.3 VR som ett granskningsverktyg .. - 8 -
 2.9 Analys av BIM inom konstruktion .. - 9 -
 2.9.1 Fördelarna med BIM ... - 10 -
 2.9.2 BIM Cloud... - 12 -
 2.10 VR inom konstruktion ... - 13 -
 ... - 13 -
3 Modellering i Revit... - 13 -
 ... - 13 -
4 Resultat från intervjuer ... - 14 -
 4.1 praktisk info ... - 14 -
 Stibå ... - 14 -
 Organisation ... - 14 -
 Arbetssätt .. - 14 -
 Kundkrets ... - 14 -
 4.2 Intervjuer ... - 14 -
 4.2.1 Frågor angående 2D och 3D:... - 15 -
 4.2.2 BIM frågor: .. - 15 -
 4.2.3 Virtual reality frågor: .. - 16 -
 ... - 16 -
5 Diskussion .. - 19 -
 5.1 Rekommendationer .. - 20 -
 5.1.1 Virtual reality .. - 20 -
 5.1.2 Samgranskningsmodell .. - 21 -
 ... - 21 -
6 Slutsats .. - 22 -
 6.1 Sammanfattning av slutsats ... - 23 -
7 Förslag fortsatta studier ... - 24 -
8 Referenslista .. - 24 -
Figurförteckning

Figur 1: En övergrippande bild av byggprocessen (Révai 2013, s.15) .. - 4 -
Figur 2: Projekteringsskedet (Révai 2013, s.11) .. - 5 -
Figur 3: Semi-immersive VR (Cnic u.å) .. - 9 -
Figur 4: En beskrivning av hur mycket resurser som krövs under löptiden av ett projekt från skiss till färdig produkt (Strafaci 2008) ... - 10 -
Figur 5: En beskrivning av hur mycket resurser som krövs under löptiden av ett projekt från skiss till färdig produkt men med hänsyn till användandet av BIM (Strafaci 2008)........ - 11 -
Figur 6: Bild tagen ur Revit som även visar nödvändiga inställningar i V-ray (Bellini 2017)... - 13 -
Beteckningar

- CAD – Computer aided design (för definition se kap 5)
- BIM – Building information modeling (för definition se kap 6)
- IFC – Industry foundation classes (för definition se kap 6.2)
- IPD - Integrated project delivery (för definition se kap 6.6)
- VDC – Virtual design and construction (för definition se kap 7)
- ICE - integrated concurrent engineering (för definition se kap 7)
- VR – Virtual reality (för definition se kap 7.2)
- Cloud – molnbaserad datalagring (för definition se kap 8.2.1)

- 2D – två dimensioner
- 3D – tre dimensioner
- 4D – fyra dimensioner, men innehåller även tid
- 5D – fem dimensioner, men innehåller även tid och kostnad
- V-ray – renderingsverktyg
- API - Application Programming Interface (Ett applikationsprogrammeringsgränssnitt som är specificerat hur program kan kommunicera med andra programvaror)
- BBR – Boverkets byggregler
- SOA - Service-oriented architecture
1 Inledning

Att arbeta inom byggnadskonstruktion är en väldigt tidsrestraktiv bransch där målet många gånger kan vara svårt att nå på grund av diverse komplikationer under projekteringskedet. Det är därför viktigt att hitta sätt att underlätta arbetsprocessen genom att analysera ny teknik inom byggsektorn. Eftersom moderna konstruktionshandlingar oftast tas fram med hjälp av datorbaserad rittprogram (CAD) som många gånger utgår från tvådimensionella (2D) vyer kan det i många fall vara svårt att få en klar helhets bild över hur konstruktioner kan se ut i verkligheten. Byggbränschen har börjat gå mot en mer BIM orienterad byggprocess och i framtiden kommer troligtvis verktyg som VR vara mer förekommande inom projekteringen. En mer ingående analys av BIM relaterad programvara med fokus på VR inom konstruktion och projektering kan resultera i smarta och funktionella lösningar som möjliggör en effektivare arbetsgång under projekteringen.

1.1 Bakgrund

1.2 Syfte

Syftet med detta examensarbete är att undersöka hur virtuell projektering med inriktning mot VR och BIM kan användas och implementeras inom främst konstruktionsprocessen inom projekteringen.

Arbetets fokus ligger på att implementera VR och BIM för att upptäcka problem tidigt under projekteringsfasen samt minska frekvensen för fel och därefter minska felkostnader för hela projekt. Då tekniken och verktygen finns för att utföra denna typ av implementering gäller det att utveckla tanken bakom så att man har en grund vilken man kan utgå ifrån. Denna grund byggs upp genom undersökningar och intervjuer med konstruktörer om hur de arbetar med konstruktionsprocessen idag och vilka handlingar som tas fram. Syftet är även att underlätta för Stiba, som idag använder sig av enbart 2D ritningar under projekteringsprocessen, att få upp ögonen för ny teknik och använda denna teknik för framtida projekt. Arbetets huvuduppgift är att analysera hur användbart VR är inom konstruktion utifrån en BIM orienterad arbetsmetod.
1.3 Frågeställning

- Kan man effektivisera projekteringsfasen med hjälp av VR och BIM?
- Är det lättare att upptäcka fel och hitta lösningar i tidigare skeden med hjälp av VR och BIM?
- Kan VR ge en bättre helhetsbild av en konstruktion och byggnad för konstruktörer?
- Kan VR utnyttjas kontinuerligt i en konstruktörs dagliga arbete?
- Kan man utnyttja VR och BIM i ett tidigt skede under projekteringen för att spara tid och pengar längre fram i ett projekt?

1.4 Metod

Efter att ha kontaktat Stiba i Borås angående grundidén om Virtual reality så fattades beslut angående hur problemformuleringen ska se ut. Tanken från början var att enbart VR skulle undersökas, men utvecklades sedan till att involvera BIM i rapporten eftersom det är grundläggande för att VR ens ska kunna vara användbart. Den största delen av informationen till bakgrundsfakta hämtades från internet och därefter användes denna information för att utforma frågor och diskuteras i enighet med konstruktörerna på Stiba för att hitta optimala lösningar för implementering av BIM och VR. Till bakgrundsfaktan från internet har även en litteraturstudie gjorts vilken baseras på litteratur och elektroniskt material som genererats från Google, Google schoolar och söktjänsten Primo som söker material från bibliotekets samlingar på Högskolan i Borås.

För att hitta optimala lösningar för implementeringen kommer en del av examensarbetet bestå utav tester av anställda från Stiba samt av mig själv på modeller tillverkade i Revit för att användas i VR syfte. Dessa tester utvärderas genom att använda en model ritad i Autodesk Revit och sedan använda dessa modeller för att generera VR kompatibla bilder eller för att analysera olika insticksmoduler. Därefter kommer intervjuer med anställda på Stiba ske med hänsyn till de anställdas syn på BIM och VR och hur de kan appliceras i deras arbetssätt.

1.5 Avgränsningar

Analysarbetet kommer begränsas till att undersöka VR som ett verktyg för konstruktörer utifrån en BIM inriktad arbetsmetod. Fördelar respektive nackdelar med BIM och VR kommer därefter analyseras och kopplas till intervjufrågorna med hänsyn till de intervjuades synpunkter.

En djupare analys och praktisk användning av insticksmoduler som nämns i arbetet som kan utnyttjas utifrån BIM modeller har inte gjorts, utan enbart insticksmoduler som varit relevanta för testmetoden av VR genom Google cardboard.
Övriga arbetsmetoder utöver BIM och VR berörs endast teoretiskt för att ge andra exempel som blir vanligare inom byggbranschen för att ge en bättre helhetsbild av hur projekteringen utvecklas.

Modellen som användes för testerna var konstruerad sedan tidigare och därför gjordes inte en djupare analys av hur en 3D modell blir till.

2 Teoretisk bakgrund
*
I detta kapitel beskrivs grundläggande information och begrepp som ligger till grund för arbetets diskussion och slutsats.

2.1 Byggprocessen

2.2 Projektering
Révai (2013). menar att projekteringen kan ses som en process som är uppdelad i olika delar, gestaltning, systemutformning och detaljutformning, se Figur 2. Det första skedet, gestaltningsskedet, har till uppgift att ta fram ett underlag i form av skisser för byggnaden. Detta stadiet sker parallellt med systemutformningen från konstruktörerna som behandlar bygget ur ett mer tekniskt perspektiv vilket innefattar utförandet av bärande stommar, ytterväggar, tak och installationer och kommer sedan i form av systemhandlingar. Den sista delen i projekteringen kallas detaljutformning vilket innebär måttsättning, dimensionering, material och utförande. När detaljutformningen är klar redovisas detta i form av ritningsunderlag och beskrivningar som kommer fungera som en bygghandel. Detaljutformningen redogör för hur saker ska byggas enligt diverse krav och villkor från BBR
och byggherren. Efter att detaljutformningen är klar får man ett förfrågningsunderlag som används i upphandlingen mellan entreprenörer. Efter upphandlingen är klar ändras handlingarna till bygghandlingar som kan nyttjas inom produktionen.

Figur 2: Projekteringsskedet (Révai 2013, s.11)

2.2.1 Konstruktörens roll

En konstruktörs uppgift är att dimensionera, beräkna och projektera byggnadens bärighet utifrån de skisser och förslag som framtagits av arkitekten. Dessa redovisas i systemhandlingarna och har till uppgift att komplettera arkitekternas ritningar och se till att byggnaden håller rent tekniskt med hjälp av hållfasthet och dimensionsberäkningar. Handlingarna kommer sedan kunna användas av byggherren för att se till så att de krav och önskemål som ställdes av kunden i början av byggprocessen följs.

2.3 CAD

Begreppet CAD omfattar all typ av skapande inom ett datorsystem och är det generella uttrycket för olika typer av dator modelleringsteknik inom byggbranschen. Idag är CAD baserad mjukvara stapeln inom byggindustrin för en rad olika discipliner och metoderna har satt standarden för dagens byggindustri. Valiga program inom byggsektorn är exempelvis AutoCAD, Revit, Sketchup och Tekla. Tekniken gör det möjligt att snabbt producera 2D och 3D visualiseringar av ritningar där man snabbt kan göra ändringar och skapa en verklighetstrogen simulering av resultatet (Teknikessen u.å.).

2.4 Revit

Autodesk Revit är ett design verktyg för arkitekter och experter inom byggsektorn. Verktyget erbjuder en stor mängd modellerings möjligheter samt support för BIM. Vad detta innebär är att man kan implementera information i sina modeller vilket underlättar skapande av mer komplexa byggnader i sin naturliga form samtidigt som det förbättrar produktiviteten. Varje modell som skapas i Revit är sparad i en enda databas vilket möjliggör att ändringar som görs på en del i ett projekt kan överföras till andra delar av modellen vilket påskynder modelleringsprocessen. Utöver det grundläggande ritprogrammet har Revit en stor mängd alternativa verktyg som kan förbättra produktiviteten hos ett projekt (Autodesk u.å.a).

Autodesk Revit erbjuder insikt i hur byggnader presterar innan ett projekt börjar byggas, förbättrar kvaliteten, och förbättrar tiden det tar för att leverera projektet. Vad som gör Revit till ett av de ledande programmen inom byggbranschen är hur effektivt arbetsflöde man får utav att använda sig av BIM för skapandet av modeller då det erbjuder en effektivare
dokumentation av hela projektet. Oavsett komplexiteten menar Autodesk (u.å.a) att revit snabbt kan hitta fel och erbjuda förbättringar under projekteringen. Den slutliga produkten av en Revit modell kan vara identisk med hur den riktiga bygg designen var planerad från början vilket minimerar riskerna för att hitta fel vid själva byggnationen. Det blir även lättare att koordinera hur designen ska påverkas eftersom det är i en virtuell miljö vilket möjliggör att man kan testa idéer och olika designval snabbare vilket gör projekten mer konsistenta genom alla projekt (Autodesk u.å.a).

2.5 BIM

Barlish & Sullivan (2012) beskriver en BIM modell genom följande citat: “an intelligent 3D virtual building model that can be constructed digitally by containing all aspects of building information — into an intelligent format that can be used to develop optimized building solutions with reduced risk and increase value before committing to a design proposal.”

För att BIM ska vara ett lönsamt val för ett projekt krävs det att alla involverade parter använder sig av BIM (Eastman 2008). Autodesk (2012) menar att om en ingående part avviker från att använda sig av metoden fallerar många av fördelarna med BIM. Denna typen av initiativ kallas ”lonely BIM” och är i de flesta fall inte optimalt för att få ut ett förväntat resultat då man saknar den gemensamma kommunikationsbyranga dvs ”social BIM” där alla ingående entreprenörer är samarbetsvilliga och delar BIM-modeller mellan varandra. Eastman (2008) nämner även att genom att ha en korrekt implementation av BIM får man en mer involverande design och bygghprocess som resulterar till bättre kvalité, minskad kostnad och reducerad tid för projekt.

2.5.1 Svårigheter med att implementera BIM

spekulationer. De största hindren för BIM är även att få företag inom byggindustrin att acceptera denna typen av ramverk in i deras organisation.

2.6 Från projekt till produkt

2.7 BIM och VR i praktiken

2.7.1 VDC

VDC är en vidareutveckling av BIM där målet är att integrera organisation, mättal och processen för att få ut ett bättre resultat. Processen går ut på att använda en typ av metod som utvecklades av NASA kallad ICE som står för integrated concurrent engineering och går ut på att skapa ett forum eller ett rum där alla delaktiga aktörer går igenom projektet tillsammans. Genom denna metoden minskar man tiden mellan frågor och svar vilket leder till en bättre, snabbare och kostnadseffektivare process. Man får även med hjälp av 3D en gemensam kommunikationsbrygga som gör det lättare att kommunicera tankar och idéer inom gruppen (Veidekke u.å.).

2.8 Virtual reality

VR är en datateknik som skapar en replikerad verklig miljö som gör det möjligt för användaren att befinner sig på en simulerad plats. Den datagenererade verkligheten kan bestå av artificiellt sensoriska upplevelser som gör det möjligt att integrera och uppleva miljön helt virtuellt.

2.8.1 VR-glasögon

VR-glasögon skapar ett virtuellt synfält som omsluter användaren och beroende på prisklass och användningsområde kan glasögonen skillja sig med stor variation. Några av dem mest populära VR-glasögonen på marknaden är:

- Oculus Rift
- HTC VIVE
- Samsung Gear
- PlayStation VR
- Google Cardboard

2.8.2 När är VR användbart

VR är ett nytt sätt i byggnärsbranschen att projektiera och behöver nödvändigtvis inte alltid vara användbart. Fernandes (2006) skriver: ”With the sudden rise in use of VR technology in recent years, the users must be careful that this technology might not be a perfect solution for all types of visualization. In some cases, a simple desktop monitor with no 3D capabilities might offer the required solution to the problem at hand.” Dem nämner även att faktorer som det interna behovet, fördelningen av resurser och graden av konkurrens är något som bör beaktas innan någon typ av implementering av VR ska bli aktuell.

2.8.3 VR som ett granskningsverktyg

Vad som skilljer VR från det traditionella sättet att arbeta är möjligheten att presentera rumslig information på ett mer engagerande sätt. Man har möjlighet att känna sig involverad i modellen och få en bättre uppfattning om ytor baserat på mänsklig skala. Utöver att man får en bra uppfattning av skala så bidrar även skuggning, ljus, textur och objekt till att skapa ett djup som skapar en mer verklighetstrogen bild. Det är med hjälp av dessa egenskaper som man kan

Figur 3: Semi-immersive VR (Cnic u.å)

2.9 Analys av BIM inom konstruktion

Figur 4: En beskrivning av hur mycket resurser som krövs under löptiden av ett projekt från skiss till färdig produkt (Strafaci 2008)

2.9.1 Fördelarna med BIM

i produktionen minskar riskerna för fel eftersom man nu redan har ett underlag som baseras helt på modellen. Man behöver därför lägga mindre tid på att kontrollera information på ritningen. Vad detta innebär är att man drastiskt drar ner tiden för skapandet av olika typer av detaljritningar eftersom man redan har alla nödvändiga dokument med relevant information som dimensioner eller mängden armering redan i modellen. Jongeling menar även att riskerna för felaktigheter i underlaget minimeras eftersom allt hämtas från samma informationskälla.

När man använder BIM menar Eastman (2008) att man kan tilldela analytisk data som laster, material och annan relevant information till en pelare eller en balk som sedan kan placeras i modellen. Det vill säga att man har all relevant information för att utnyttja analyseringsprogram och simuleringsverktyg redan under den konceptuella designen. Han menar även att genom att lägga mer fokus på den konceptuella designen är det möjligt att använda tjänster och verktyg till att göra analyser i tidigt skede vilken sedan kan fungera som underlag längre fram under projekteringen. Detta är framförallt användbart i större projekt som behandlar stora mängder information.

Figur 5: En beskrivning av hur mycket resurser som krövs under löptiden av ett projekt från skiss till färdig produkt men med hänsyn till användandet av BIM (Strafaci 2008)

2.9.2 BIM Cloud

2.10 VR inom konstruktion

"Vi vill kunna simulera det planerade för att kunna bedöma det i förväg”(Wikfors 2003, s.103). Wikfors nämner att VR är en början av en utveckling som kan spela lika stor roll som ritningar och hela centralperspektivet. Att ha en modell där du kan visualisera helheten öppnar upp en helt ny dimension än vanliga datorstödda ritningar eftersom att du kan modellera projekt som om de är verkliga byggnader. Han menar även att gränsen mellan arkitekt och ingenjör minskar genom att ha en gemensam kommunikationsbrygga vilket resulterar till att vetenskap och konst kommer allt närmare varandra.
3 Modellering i Revit

I detta kapitel beskrivs kort den praktiska tillämpningen av modelleringsprogrammet Revit.

I Figur 6 redovisas en del i en byggnad från Revit och det var denna typen av bilder som renderades och kunde utnyttjas av Google cardboard. Modellerna som användes är helt olika i sitt utformande och den ena av dem figur var konstruerad av mig sedan tidigare medan den andra modellen var en redigerad mall från revit. Anledningen till att det användes två olika modeller var för att få en bättre bild av hur VR kunde utnyttjas i två helt olika utformanden.

För att bilderna som genererades utifrån modellen skulle kunna vara kompatibla krävdes det ett renderingsprogram kallad V-ray. Detta programmet gjorde det möjligt att rendera bilderna med rätt inställningar (12:1 cubic) och upplösning (1536x1536) som krävdes utav VR-glasögonen. Efter att inställningarna var korrekta användes kamerafunktionen i Revit för att ta ut bilder i modellen. Efter bilderna var tagna kunde renderingen startas. När renderingen var klar kundes bilderna laddas upp på en datalagringstjänst genom en applikation på mobilen vid namn ”Scope” skapad av IrisVR. Efter att bilderna var uppladdade så krävdes det enbart att mobilen var placerad i Google cardboard hållaren samt att applikationen var startad för att skapa VR upplevelsen.

4 Resultat från intervjuer

I detta kapitel så presenteras resultatet från de intervjuer som gjordes av anställda på Stiba.

4.1 praktisk info

Stiba

Organisation

Organisationen på Stiba är väldigt platt och har inte direkt en hierarkisk organisation vilket innebär att de flesta anställda har kunskaper att göra många olika typer av arbetsuppgifter. Alltå är inte en anställd låst till att enbart till exempel hantera kunder utan har även möjlighet att utföra konstruktions relaterade arbetsuppgifter. Detta skapar en väldigt flexibel arbetsplats där de anställda kan ta hjälp av varandra på olika sätt.

VD
Har huvudansvaret för företaget och dess åtaganden.

Ledningsgrupp är en grupp bestående av 6-7 tjänstemän som ansvarar för kundkontakt och åtagande av olika projekt utöver konstruktions relaterat arbete.

Tjänstemän (konstruktörer, beräkningsingenjörer, Ritkunniga) Ansvarar för det generella arbetet i företaget och kan vara allt från att framställa ritningsunderlag till olika typer av konstruktions beräkningar.

Arbetssätt

Kundkrets

Stiba har en kundkrets bestående av en rad olika entreprenörer så som NCC, Västbygg, Skanska och kommuner.

4.2 Intervjuer

Hans. Arbetat ca 3 år – Konstruktör
Arbetar främst med prefab, bjälklagsindelning, tillverkningstitningar och väggelevationer.

Kristian. Arbetat ca 2 år – konstruktör/byggkonsult
Arbetar främst med ritningar, beräkningar och som byggkonsult.

Johan. Arbetat ca 1 år – konstruktör
Arbetar främst med beräkningar och ritningar.

Emil. Arbetat ca 1 år – konstruktör
Arbetar främst med dimensionering och samordning.

Louise. Arbetat ca 3.5 år – konstruktör
Arbetar främst med att konstiera ritningar i 3D modelleringsprogrammet revit.

Thomas. Arbetat många år – konstruktör/handläggare
Arbetar mycket med att stötta andra konstruktörer i olika konstruktions –och CAD relaterade frågor. Har mycket kundkontakt och fungerar som en problemlösare inom projektering samt produktion.
4.2.1 Frågor angående 2D och 3D:
I denna delen av intervjun fick respondenterna svara på frågor som berörde deras nuvarande arbetsmetod i 2D samt frågor angående 3D.

"Varför ritar ni i 2D?"

De intervjuade menade att genom att rita i 2D så blir detaljnivån och informationen gällande geometri bättre. En av dem brukade även göra en lättare skiss i 3D vid sidan av för att fylla den visuella aspekten eftersom denne ansåg att rita i 2D är lättare. Några av de intervjuade menade även att det blev mer exakt och lättare att exempelvis rita konturlinjer i 2D. Dem flesta av de intervjuade menade att de hade en bra bild av hur det som skulle projekteras såg ut i verkligheten, men att det beror helt på hur byggetekniskt kunnig man är. Något som framkom av dem som arbetat i revit tidigare var att det var lättare och smidigare att rita detaljer i 2D än i revit.

"Vad skulle du säga är den största nackdelen med att rita i 2D?"

Om underlaget är dåligt tar det längre tid att tolka och förstå vad som behöver göras. Revideringar ansågs vara ett av de största problemen när det kommer till att rita i 2D. En av de intervjuade menade även att genom att rita i 2D så arbetar man med väldigt begränsad information där man inte kan få ut volymer och information direkt, utan skapar ett tidskrävande merarbete.

"I vilka fall tror du att det är bättre att rita i 3D än 2D?"

En av de tillfrågade menade att genom att arbeta i 3D så får man en en dimension gratis och att genom att vrida på modellen så får man fram sektioner lättare. Många av de intervjuade ansåg att de kunde se detaljer lättare utifrån 3D modellen varpå man sedan kan skissa ut det som man såg. En av de tillfrågade ansåg att en 3D modell är ett väldigt bra underlag som ger bättre visualisering med en bättre detaljnivå. Med 3D så kan man i samma moment få fram all nödvändig information och dokumentation. Det nämnades även att vid större byggen med mycket installationer och komplicerad grundläggning så blir allting mycket tydligare i 3D. Man ser lättare allting som händer vilket underlättar samordning och riskerna för kollisioner under projekteringen. En av de tillfrågade nämnde också att när det kommer till ställdommar och stag så är det nästan är ett måste att projektera i 3D.

Den största nackdelen som nämnades av de tillfrågade angående 3D var att det tar längre tid och är svårare att få fram och rita bra detaljer utifrån 3D modelleringssystemet.

4.2.2 BIM frågor:
I denna delen av intervjun fick respondenterna svara på ett antal frågor som berörde BIM.

"Vad betyder BIM för dig? Har du använt BIM-verktyg tidigare?"

Dem flesta medarbetarna har inte använt BIM aktivt utan endast i den utsträckning där IFC-filer har varit inblandat för mått, visualisering och krockar. En del av dem hade dock använt BIM utformade ritverktyg som Revit i sin utbildning och i sitt arbete. Så överlag så menar alla att kompetensen finns, men att det inte är vanligt att beställare ställer krav vilket resulterar till
att det helt enkelt inte behövs. Däremot påpekar en av dem att de är väldigt följsamma på företaget och om kraven som ställs i framtiden blir alltmer vanliga så kommer de nog börja utnyttja det.

"Hur vanligt är det att ni blir frågade av beställare att utnyttja BIM?"

I frågan om att använda BIM från beställare så menade dem flesta att det förekommer, men att det är väldigt ovanligt ca 5-10%. När frågan väl kommer upp så är det oftast större projekt eller t.ex. när stommleverantörer sitter med krängliga detaljer och vill ha 3D modeller. Nästan alla intervjuade menar dock att det blir allt vanligare att beställare ställer krav på att projektera i 3D.

"Hur tror du BIM skulle kunna påverka dina nuvarande arbetsuppgifter?"

Alla som blev intervjuade menade att BIM definitivt skulle kunna vara någonting positivt för företaget. Framförallt när det kommer till t.ex. Prefab, installationer och större projekt.

"Tror du användningen av en samgranskningsmodell dvs. en modell där olika discipliner så som arkitekt och konsulter kan arbeta tillsammans med skulle kunna vara lönsamt för dig som konstruktör?"

Många av de tillfrågade var positiva till denna typen av arbetsmetod så länge modellen automatiskt uppdateras. En av de intervjuade menade att BIM är oerhört användbart för projekt i sin helhet, men i nuläget inte nödvändigtvis för konstruktorer. Denne menade att det troligtvis snarare skulle bli mer besvärligt och tidskrävande. En av de intervjuade ansåg att det troligtvis inte kommer fungera så bra eftersom att alla ingående parter måste lära sig nya program vilket i slutändan kommer bli alltför komplicerat. Genom att utnyttja BIM och 3D så menade många att man nu kan ställa frågor på ett helt annat sätt som i slutändan kommer påskynda olika processer. En av de intervjuade menade att det är ett väldigt smidigt sätt att projektera eftersom man lättare kan se helheten genom att utnyttja 3D. Man har även möjligheten att få en mer övergripande blick av projekt då varje byggeelement innehåller praktisk information. Möjligheten att även kunna gå närmare och runt i modellen är ett väldigt bra sätt att få sig en bra helhetsbild. En av de intervjuade menade att genom att använda BIM så får det som ritas av konstruktoren ett mervärde som är mer värdefullt för beställaren. Om det implementeras på ett bra sätt så kan det användas som ett försäljningsverktyg. De gångerna BIM inte skulle kunna vara lönsamt utan mer som en tidsförlust är i mindre projekt eftersom de ansåg att det helt enkelt blev för överflödigt.

4.2.3 Virtual reality frågor:

Denna delen av frågorna skillde sig väldigt mycket från person till person vilket resulterade till att svaren blev uppdelade i individuella svar istället för ett generellt svar.

"Tror du att verktyg som t.ex. Virtual reality (VR) skulle kunna bidra under projekteringsfasen och i ditt arbete?(vilka användningsområden och typer av projekt isäfall?) exempel: Lättare analysera detaljer, kollisioner m.m."

2. Den tillfrågade var inte helt säker på om VR kan vara användbart för en konstruktör utan är mer användbart för beställare och arkitekter i form av ett säljargument eller en kommunikationsbrygga.

3. Personen tror inte att det kommer hjälpa i sitt eget arbete utan att det räcker med att kunna vrida och snurra i en 3D modell. Denne menade att det brukar mer vara andra projektörer som får flyta sina objekt om en kollision skulle uppstå och inte konstruktören.

4. Den tillfrågade ansåg att det nästan är lite samma sak som att skruva i modellen i 3D. Personen kan dock tänka sig att det kan vara användbart ute i produktion.

6. Den tillfrågade ansåg att så länge tekniken är lättillgänglig och simpel där inga extra kunskaper krävs så är VR ett användningsbart verktyg i projekteringen.

"Skulle du kunna utnyttja det på något sätt i en vanlig arbetsdag?"

1. En av de tillfrågade menade att VR kan utnyttjas som en "utstickare" alltså som ett extra hjälpmedel genom att man kan projicera och komma närmare objekt.

3. Personen ansåg att VR inte kunde utnyttjas i sitt arbete.

4. Den intervjuade såg inte någon användning av VR i nuläget utan att det räcker med en vanlig 3D-modell.

5. Personen anser att det kan utnyttjas vid granskning av vissa detaljer och är ett bra visualiseringsverktyg, framförallt när man ritar i 3D.

"Vad var bra/dåligt med just denna typen av visualiseringsmetod? Kan du se användningsområden för denna typen av metod?"

1. Den tillfrågade menade att en datorbaserad VR är bättre och att stå stilla som i denna visualiseringsmetoden inte är särskilt lönsamt. Däremot ansåg denne att det kan
fungera som ett sätt att analysera kritiska punkter och använda dessa i kombination med ett typ av ett montage för att få hjälp på vägen.

2. Den intervjuade personen ansåg att bilden var lite suddig, men att det är ett bra verktyg om behovet av att visualisera finns. Sen så menade denne att det var enkelheten som gör det till ett smidigt verktyg på arbetsplatsen.

3. Den intervjuade personen ansåg att denna typen av verktyg inte var användbart i sitt arbete, men mer ute på plats i produktion samt för kund som enkelt vill se hur konstruktioner ser ut i verkligheten.

4. Den tillfrågade tycker att det var ett lättillgängligt verktyg, men såg inte användningen av det just nu.

5. Personen kan tänka sig att i en del fall kan det komma till användning framförallt om man vill se mer utav en detalj i en modell.

6. Personen såg denna typen av visualiseringsmetod som en väljutlitig liten investering som gör tekniken mer tillgänglig. Tekniken kan utnyttjas som komplement i granskningsskedet så länge man har ett enkelt gränssnitt.

"Tror du denna tekniken kommer bli mer användbar i framtiden?"

1. Den tillfrågade personen var oerhört positiv till framtiden för VR och att det troligtvis kommer få många användningsområden.

2. Personen tror att det kommer vara användbart, men att det är en gränsdragning när det kommer till pengar och tid.

3. Den intervjuade ansåg att det troligtvis kommer vara mer användbart i framtiden om man t.ex. kan rita och flytta saker i glasögonen.

4. Personen såg tveksamt på att det kommer utnyttjas i framtiden och om det skulle användas är det isåfall mot arkitektur och produktion.

5. Den tillfrågade var positiv till att VR kommer kunna användas i framtiden.

6. Personen ansåg att det kommer troligtvis bli mer användbart i framtiden, men att det isåfall är mer på utförande sidan. Denne menade dock att det är konstruktörernas jobb att se till så att underlaget som går ut i produktion är väl utfört vilket då knyter an till användning av VR.

Produktions relaterade frågor som enbart ställdes till ett fåtal av de intervjuade.

5 Diskussion

Att använda VR i teorin kan anses som ett perfekt medel att visualisera och skapa en nästan perfekt bild av hur projektet inte bara ser ut utanför väggarna utan även hur det ser ut innanför. En konstruktör som arbetar från ett 2D perspektiv kan i många fall bli våldigt låst då deras tolkning av deras modell är helt uppbyggt utifrån deras erfarenhet och förståelse. Detta medför att man har en mer separerad branch som i många fall saknar möjligheten att få en fulländad respons då tolkningen från andra medverkande i projektet kan skillja sig gentemot konstrukturen. Att arbeta utifrån ett mer 3D centrerat arbetsätt med möjligheten till att arbeta mer med BIM har visat sig vara i många fall mer lönsamt än att arbeta utifrån 2D. Det handlar i män och mycket om nästa generations modelleringsteknik likväl som när man övergick från att rita med papper och penna till att gå över till att rita i datorer.

Ett stort problem att använda 2D i projekteringen är den stora tidsförlusten vid revideringar. Med en 3D modell har man nu möjligheterna att generera tillverkningsritningar och dokumentation direkt från modellen istället för att behövs göra manuela ändringar på varje reviderad ritning. Även om det framkom i intervjuerna av medarbetare att det tar längre tid och är krångligare att rita detaljer i 3D än 2D så beror det snarare på ren ovana då tolkningen från andra medverkande i projektet kan skillja sig gentemot konstrukturen. Att arbeta utifrån ett mer 3D centrert arbetsätt med möjligheten till att arbeta mer med BIM har visat sig vara i många fall mer lönsamt än att arbeta utifrån 2D. Det handlar i män och mycket om nästa generations modelleringsteknik likväl som när man övergick från att rita med papper och penna till att gå över till att rita i datorer.

Det Stiba gör i nuläget fungerar och kommer även göra det i många år fram i tiden. Problemet är när beställare inte längre kommer acceptera denna typen av arbetssätt och som det ser ut i nuläget på byggmarknaden blir detta alltmer förekommande. BIM kräver mycket resurser för att implementeras och det är just den delen som är avskräckande för mindre företag som inte har tillräckliga resurser till att endast utgå ifrån en större mängd spekulationer än fakta av BIMs lönsamhet. Däremot vad jag har sett under tiden som jag arbetat med rapporten är att företagen med att använda BIM och teknik som VR är betydligt större till antal än nackdelarna. Det största problemet ligger i att för att kunna integrera dessa nya tekniker så krävs det att företag behöver ändra sitt arbetsätt och struktur vilket i många fall är väldigt avskräckande framförallt i de fall där arbetsätt och struktur redan fungerar.

En av de viktigaste detaljerna med arbetet har varit att VR-glässögonen som används har utgått från en statisk representation istället från en mer dynamisk. Vad detta innebär är att arbetet har utgått ifrån så kallade Google cardboard och ett program som heter Scope skapat av Iris VR för att skapa känslan av virtual reality. Däremot finns det idag betydligt mer avancerade verktyg, men som ligger i en betydligt högre prisklass. Occulus rift och HTC vive är två av dem mest tekniskt utvecklade VR-glässögonen på marknaden och möjligheterna att kunna göra saker som att gå runt i modeller och påverka miljön, är något som är oerhört
viktigt för att skapa den helhetsbild och simulerings kan anses vara mer användningsbar inom konstruktion och byggbranschen. Den statiska representationen kan därför vara en bidragande faktor till att några av de intervjuade hade en mer negativ syn på verktyget.

En viktig aspekt som man måste ta hänsyn till efter intervjuerna var att kunskapsgraden när det kommer till BIM och VR är väldigt låg vilket påverkade responserna från de tillfrågade eftersom de inte var insatta i tekniken eller känner behovet av att känna till det. Under intervjun användes mer konkreta förslag på användningsområden så att de tillfrågade fick lite mer kött på benen så att de kunde ge mer kvalificerade responser. Men i många fall där den intervjuade personen inte riktigt kunde se helheten och potentialen av VR och BIM så blev svaren oftast att de inte såg någon nytta med det. Däremot när mer konkreta exempel användes blev svaren mer utvecklade även om de inte riktigt kunde se nytan i den bemärkelse som jag såg det. Detta kan då ha varit ett fel i frågorna som jag valde att ställa och hur jag valde att ställa dem. En viktig sak att nämn är dock att några av de tillfrågade var mer insatta och kunde därför ge mer kvalitativa svar och exempel på vad VR och BIM kan användas till i deras arbete så som vid schaktning och som granskningsverktyg.

5.1 Rekommendationer

Efter att ha intervjuat ett antal medarbetare på Stiba visade det sig att de är väldigt öppna att översätta till BIM, men att problemet ligger i att beställare sällan kräver krav på att det används. Att bygga utifrån en mer informationskaraktäriserad projekteringsprocess tror jag är en oerhört bra utveckling för en bransch som baseras på tid och pengar. Med hjälp av denna typen av projektering tar man bort ett stort antal mänskliga parametrar och skapar en mer automatiserad process där fel kan reduceras och åtgärdas snabbare.

Stiba bör börja jobba successivt med att bygga upp kunskap inom BIM utformad 3D modellering så att man i framtiden kan dra nytta av BIM och möjligtvis VR. Det är en gränsdragning som handlar om pengar, men om Stiba ska kunna vara mer konkurrenskraftig på marknaden är implementeringen nödvändig för att kunna förbättra kvalité och tidsvinster. En viktig aspekt som stärker rekommendationen att börja använda BIM är även att det troligtvis kommer vara ett krav från många beställare att projektering sker i BIM i framtiden.

5.1.1 Virtual reality

Virtual reality gör att man öppnar upp en helt ny dimension när det gäller att tolka virtuella modeller. Genom att kunna visualisera helheten av ett projekt kan man nu utgå från att byggnaden är helt klar och därefter göra mer detaljerade analyser av hur saker hänger ihop.
Att kunna hitta kollisioner tidigare är möjligt från en semi-immersive vy från att analysera modellen från datorn, men dessa kollisioner blir lättare att bedöma med hjälp av VR. Utöver detta så har tekniken kommit såpass långt att det inte kräver en direkthjälp eller programmering för att använda VR.

5.1.2 Samgranskningsmodell

Kommunikation mellan arkitekt och konstrukten är en oerhört viktig del för att projektet ska kunna flyta på och ge det resultat som beställaren kräver. Genom att använda en samordnad modell kan ändringar ske kontinuerligt och istället för att för att konstruktörens input ska ske via möten kan detta ske direkt i modellen där alla ingående parter i projektet kan ge direkt respons. Problemet med denna typen av modell är att alla som medverkar i projektet måste vara delaktiga och använda samma program för att det ska fungera på ett bra och effektivt sätt. En 3D modell ska användas av konstruktorer på Stiba så långt det går eftersom BIM utformade modelleringsprogram gör det möjligt att simulera, analysera och utföra beräkningar på modeller via insticksmoduler som exempelvis Revit structure analysis. Att ha ett gemensamt projekt som ligger i en gemensam lagringsenhet som cloudBIM gör det lättare för alla att bli mer involverade eftersom de nu har tillgång till all relevant data.

6 Slutsats

- Kan man effektivisera projekteringsfasen med hjälp av VR och BIM?

Genom att arbeta med BIM och VR kommer projekteringen nödvändigtvis inte effektiviseras för konstruktorer på alla fronter. Lösningsmetoden kommer framförd av fölbidringar av hela byggprocessen genom att underlätta andra aktörers arbeten genom att generera ett mervärde från 3D modeller och användas exempelvis som underlag under möten eller i form av 5D BIM. Genom ingående data i modeller och smartare verktyg blir projekteringen mer kontrollerad samtidigt som det blir lättare för konstruktorer att få ut dokumentation i form av exempelvis ritunderlag. Att kunna utnyttja BIM utformade program har visat sig vara väldigt effektivt för många företag, men det är inte något som är en självklarhet för alla företag och efterfrågas inte ofta av beställare. I den fall då BIM inte är ett krav så är det troligtvis mest optimalt att konstruktörer använder sig av en metod som lämpar sig bäst för sitt företag. Däremot om ett projekt utgår från att alla ingående aktörer använder sig av BIM på ett optimalt sätt så är VR och BIM något som gynnar projekteringsfasen. Att implementera VR i modellen kan effektivisera projekteringen genom att ge en bättre visuell bild av konstruktioner och hjälpa andra aktörer i projekt att få en gemensam förståelse vilket gör att försöken och responsen blir bättre.

- Är det lättare att upptäcka fel och hitta lösningar i tidigare skeden med hjälp av VR och BIM?

Att använda BIM och VR i kombination med en samgranskningsmodell har visat att det är lättare att upptäcka kollisioner. Att använda sig av en mer automatiserad dokumentation gör att konstruktorerna även löper mindre risk för manuella fel vid revideringar. Att integrera VR i slutskeden och som ett granskningsverktyg eller under projekteringensmötet kan förbättra kvaliteten av det konstruktorerna levererar genom att förankra det som ritats av konstrukten
i en verklighetstrogen miljö som kan tolkas av övriga konsulter i ett projekt. Utifrån denna typen av samarbete blir det därför lättare att få svar på frågor och hitta lösningar.

- **Kan VR ge en bättre helhetsbild av en konstruktion och byggnad för konstruktörer?**

Överlag så är en BIM modell oftast tillräckligt för att skapa sig en bra helhetsbild av en konstruktion och byggnad. VR kan i detta fallet mer fungera som ett komplement i mer komplexa fall där helheten kan vara svårare att se. I ett byggsprojekt där VR kan tänkas vara användbart så finns möjligheten att granska detaljer utifrån mänsklig skala och sätta det som granskas i ett verkligt sammanhang vilket förbättrar helhetsintrycket av modellen. Utifrån en mer verklighetsförankrad visualisering öppnas möjligheten till att få en mer verklighetsförankrad projektering.

Att använda VR som Google cardboard kan tänkas vara ett smidigt sätt att få en bättre helhetsbild av delar i projekt eftersom att det är mycket enkelt verktyg att använda samt en väldigt liten investering.

- **Kan VR utnyttjas kontinuerligt i en konstruktörs dagliga arbete?**

Arbetet visar klara fördelar med att integrera VR i konstruktörers dagliga arbete, men att användningsområdena är begränsade beroende av projektets storlek och komplexitet. I dem fall där VR kan tänkas vara mer användbart är som ett granskningsverktyg och i slutskeden. Det är idag inte alltför vanligt att beställare efterfrågar BIM av konstruktörer vilket gör att det i dem fallen inte finns någon direkt användning av VR.

- **Kan man utnyttja VR och BIM i ett tidigt skede under projekteringen för att spara tid och pengar längre fram i ett projekt?**

Att använda sig av BIM i ett tidigare stadie har visat sig vara mer lönsamt då man sparar resurser och pengar längre fram i projekteringen. Att lägga mer resurser i början för att framställa en 3D modell har visat sig vara billigare än att göra 2D ritningar som ibland kräver mer tidskrävande revideringar senare i projekteringen. Genom att använda 3D modeller så får man ett mervärde som kan användas inte bara i början av projekteringen utan hela vägen tills en färdig byggnad. VR anses dock inte vara lika användbart i början av projekteringen utan blir mer användbart när en fullt konfigurerad 3D modell är framställd eftersom det är då det finns ett behov av att se helheten av modellen i ett verkligt sammanhang.

6.1 Sammanfattning av slutsats

En stor anledning till att virtuell teknik som BIM och VR kan vara till stor hjälp för ett konstruktionsföretag är för att det möjliggör chanserna till att behandla projekt på mer än ett sätt. Även om tekniken inte visat sig var helt där än för konstruktörer på Stibas är det på god väg och genom att skapa en tidig vana att arbeta med BIM och VR blir företaget mer konkurrenskraftig inom byggbranschen.
Resultatet från examensarbetets frågeställningar och bakomliggande fakta visade att BIM kan ses som ett väldigt praktiskt verktyg för konstruktörer i dem fallen där det efterfrågas av beställare, men problemet ligger i att det i flesta fall inte efterfrågas. Genom att arbeta med BIM kommer projekteringen nödväntgivs inte effektiviseras för konstruktörer på alla fronter, men lönsamheten kommer från förbättringar av hela byggregessen genom att underlätta andra aktörers arbeten genom att generera ett mervärde från 3D modeller. Att integrera VR i slutskederna och som ett granskningsverktyg eller under projekteringsmöten kan även förbättra kvaliteten av det konstruktörerna levererar genom att förankra det som ritats av konstruktören i en verklighetstrogen miljö som kan tolkas av övriga konsulter i ett projekt. Denna typen av VR projektering kan utnyttjas på flera olika sätt genom att använda olika typer av VR. Exempelvis är Google cardboard en väldigt liten investering som beroende på projekt kan vara tillräckligt för att visualisera det som efterfrågas.

Utbudet av VR inom byggenmarknaden är stor och beroende på vilken typ av projekt och företag så finns möjligheterna att utnyttja olika typer av VR i varierande prisklasser. Glasögon som Oculus rift erbjuder ett större utbud av projekteringsmöjligheter, men ligger på en betydligt högre priskostnad än Google cardboard, som i vissa fall är tillräcklig beroende på vilken typ av projekt som konstruktören arbetar med. Men som det framkom i intervjun så ansåg konstruktörerna att ett stort användningsområdet är mot produktion, granskningsverktyg och i slutskeden. Stiba har möjlighet att prova på att testa verktyg som Google cardboard som är en väldigt liten investering för att granska kritiska punkter och sedan övergå till lite mer påkostade VR verktyg som fully immersed VR om det visar sig vara effektivt. Det visar sig att användningen av virtual reality är väldigt relativt till vilken typ av projekt som är aktuellt och ett mindre projekt eller mindre komplexa konstruktioner kan oftast lösas med enklare verktyg där man helt enkelt inte behöver ett extra verktyg som VR. Däremot när projekten är mer komplexa så kan VR vara en extra hjälp på vägen både för konstruktörer, men framförallt för andra inblandade aktörer i projektet som lättare kan ta del av vad konstruktören har ritat i en verklighetstrogen tappning.

Virtual reality är väldigt nytt inom byggsektorn, men av att döma från många stora byggföretag är det någonting som fyller en viss funktion. För konstruktörer är denna funktionen inte lika tydlig vilket är anledningen till att det måste vara mer som ett complement som inte kräver mycket tid och kunskap att använda. Under intervjuerna framgick det att som konstruktör var det väldigt svårt att kunna se någon nytt av VR i början av projekteringen, men att det troligtvis kommer bli mer användbart när tekniken är mer utvecklad. Genom att använda sig av VR i kombination med en lyckad BIM projektering så ökar användningsområdena eftersom man kan integrera andra discipliner på ett mer involverande sätt. Genom att använda sig av 3D modeller utformade för BIM så skapar man en kommunikationsbrygga som är lättare att tyda av andra ingående parter i projektet än en 2D ritning. Det är denna typen av kommunikationsbrygga som kan förstärkas med hjälp utav VR och kan förhoppningsvis förbättra och effektivisera projekteringen i slutändan.

7 Förslag fortsatta studier

Denna studie har valt att fokusera på hur BIM och VR kan användas av konstruktörer i ett företag med liten kunskap inom dessa två typer av förhållningssätt till projekteringsprocessen. Rapporten har utgått från att ta upp basfakta som kan ligga till grund för att väcka Stibas intresse för denna typ av projektering. En fortsatt studie där man involverar mer företag som även redan använder dessa två verktyg i sin projektering skulle vara intressant för att hitta lösningar som kan gynna projekteringsskedet inom byggbranschen. Ett annat förslag på
fortsatt studie är att fokusera och jämföra de olika VR glasögonen som finns då det i denna studie endast använts en typ av VR glasögon.

8 Referenslista

Tryckta källor

Wikfors, Ö. 2003 Byggandets informationsteknologi - Så utvecklas används och utvecklas IT I byggandet AB svensk Byggtjänst, Stockholm

Elektroniska källor

Autodesk (u.å.a) Vad kan du göra med revit? http://www.autodesk.se/products/revit-family/overview (2017-03-06)

NCC (u.å) *Digitalt byggande med VDC och VR* https://www.ncc.se/vart-erbjudande/kunderbjudande/digitalt-byggande/vdc-och-vr/ (2017-05-04)

Teknikessen (u.å) *Vad är CAD? Teknikessen.se/vad-ar-cad/* (2017-03-01)

Veidekke (u.å.) *VDC – virtual design and construction* http://veidekke.se/omoss/kompetenser/article15019.ece (2017-03-15)

Figur 1: Révai, E (2013) *Byggstyrning* Fjärde upplagan Liber AB, Stockholm

Figur 3: Cnic (u.å) *Semi immersive VR* https://www.cnic.navy.mil/content/dam/cnic/cnrse/NSAO Orlando/150716-N-WC128-002.jpg
Figur 4 & 5: Strafaci.A (2008) *What does BIM mean for Civil Engineers*
http://cenews.com/article/6098/what_does_bim_mean_for_civil_engineers

Figur 6: Bellini.V (2017) *Bild framtagen ur Revit*